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Pathologies in satisfaction classes

Theorem 1

Let k N, let be a countable, recursively saturated model of

PA. Let P be an element of such that:

a a N “P 0 0 0 0

a times

”]

Then has a satisfaction class containing P.

Source: H. Kotlarski, S. Krajewski, and A. H. Lachlan “Construction of

satisfaction classes for nonstandard models", Canadian Mathematical

Bulletin 24 (1981), 283-293.
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Why is P pathological?

Reasons:

P 0 and Tr
0

P . In effect: our general notion of

truth doesn’t coincide with the partial ones.

Negation of P is provable in logic.

A satisfaction class S containing P must contain also some

sentences disprovable in sentential logic. Reason: the

implication “P 0 0” is a propositional tautology, but it

can’t belong to S.
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(In)eliminability of pathologies

Theorem 2

Let be a countable, recursively saturated model of PA and let

n be a natural number. Then has a satisfaction class T such

that:

T n Tr n Tr .

Source: F. Engström Satisfaction classes in nonstandard models of first

order arithmetic, Chalmers University of Technology and Göteborg University,

2002, pp. 56-57.
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Truth and sentential logic

Theorem 4

Denote by T a theory: PA S PrSentTr Tr . Then

T 0-PA S .

Explanation:

“PrSentTr ” means: “x has a proof from true premises in

sentential logic”.
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Proof of Theorem 4

Proof:

Let x be a 0 formula of the extended language. Assume:

M Tr x x

Claim: there is the smallest object in M Tr satisfying x .

Fix a number a such that M Tr a . By the main lemma

we obtain: M Tr Tr F a . Therefore:

M Tr Tr b a F b c b F c .

Explanation:

The formula “F a b a F b c b F c ” is a

propositional tautology. Since its antecedent is true, the

subsequent must also be true.
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Proof of Theorem 4

Proof:

We obtained: M Tr Tr b a F b c b F c .

So fix b such that:

M Tr Tr F b c b F c .

Such a b exists because by assumption truth is closed under

sentential logic.

By the main lemma we obtain:

M Tr b and M Tr v b v .



Questions

Question 1

Are the following theories equivalent:

T1 PrSentTr Tr

T2 PrSent Tr



Questions

Question 2

For which arithmetics S it is true that:

S + “Tr is a satisfaction class” + “Logic is true” = 0 PA S



Questions

Question 3

For which theories T

PA S + “T is true”

is a conservative extension of PA?




