On eliminating pathologies in satisfaction classes

Cezary Cieśliński

Institute of Philosophy University of Warsaw

Logic Colloquium 2009

Truth axioms (TA)

- $\forall t_1, t_2 \in Tm^s[Tr(\ulcorner t_1 = t_2 \urcorner) \equiv val(t_1) = val(t_2)]$
- $\forall \varphi [Tr(\ulcorner \neg \varphi \urcorner) \equiv \neg Tr(\varphi)]$
- $\forall \varphi, \psi [\text{Tr}(\ulcorner \varphi \lor \psi \urcorner) \equiv \text{Tr}(\varphi) \lor \text{Tr}(\psi)]$
- $\forall \varphi \forall a \in Var[Tr(\forall a \varphi) \equiv \forall vTr(\forall \varphi(v))]$

Truth theories

- $PA(S)^- = PA \cup TA$
- $PA(S) = PA \cup TA \cup \{Ind_{\varphi(x)} : \varphi(x) \in L(PA)^{Tr}\}$

Truth axioms (TA)

- $\forall t_1, t_2 \in Tm^s[Tr(\ulcorner t_1 = t_2 \urcorner) \equiv val(t_1) = val(t_2)]$
- $\forall \varphi [Tr(\ulcorner \neg \varphi \urcorner) \equiv \neg Tr(\varphi)]$
- $\forall \varphi, \psi[Tr(\ulcorner \varphi \lor \psi \urcorner) \equiv Tr(\varphi) \lor Tr(\psi)]$
- $\forall \varphi \forall a \in Var[Tr(\forall a \varphi) \equiv \forall vTr(\forall (\dot{v}))]$

Truth theories

• $PA(S)^{-} = PA \cup TA$

• $PA(S) = PA \cup TA \cup \{Ind_{\varphi(x)} : \varphi(x) \in L(PA)^{Tr}\}$

Truth axioms (TA)

- $\forall t_1, t_2 \in Tm^s[Tr(\ulcorner t_1 = t_2 \urcorner) \equiv val(t_1) = val(t_2)]$
- $\forall \varphi [Tr(\ulcorner \neg \varphi \urcorner) \equiv \neg Tr(\varphi)]$
- $\forall \varphi, \psi[Tr(\ulcorner \varphi \lor \psi \urcorner) \equiv Tr(\varphi) \lor Tr(\psi)]$
- $\forall \varphi \forall a \in Var[Tr(\forall a \varphi) \equiv \forall vTr(\forall (v))]$

Truth theories

- $PA(S)^- = PA \cup TA$
- $PA(S) = PA \cup TA \cup \{Ind_{\varphi(x)} : \varphi(x) \in L(PA)^{Tr}\}$

Satisfaction classes

Let $\mathfrak{M} \models PA$; let $T \subseteq \mathfrak{M}$.

① *T* is a satisfaction class in \mathfrak{M} iff $(\mathfrak{M}, T) \models PA(S)^{-}$

2 *T* is an inductive satisfaction class in \mathfrak{M} iff $(\mathfrak{M}, T) \models PA(S)$

Satisfaction classes

Let $\mathfrak{M} \models PA$; let $T \subseteq \mathfrak{M}$.

• T is a satisfaction class in \mathfrak{M} iff $(\mathfrak{M}, T) \models PA(S)^{-}$

T is an inductive satisfaction class in \mathfrak{M} iff $(\mathfrak{M}, T) \models PA(S)$

Satisfaction classes

Let $\mathfrak{M} \models PA$; let $T \subseteq \mathfrak{M}$.

- **1** T is a satisfaction class in \mathfrak{M} iff $(\mathfrak{M}, T) \models PA(S)^{-}$
- 2 *T* is an inductive satisfaction class in \mathfrak{M} iff $(\mathfrak{M}, T) \models PA(S)$

Theorem 1

Let $k \in N$, let \mathfrak{M} be a countable, recursively saturated model of *PA*. Let *P* be an element of \mathfrak{M} such that:

$$\exists a \in \mathfrak{M}[a > N \land \mathfrak{M} \models "P = \underbrace{\neg 0 \neq 0 \lor \ldots \lor 0 \neq 0}_{a \text{ times}}$$

Then \mathfrak{M} has a satisfaction class containing P.

Source: H. Kotlarski, S. Krajewski, and A. H. Lachlan "Construction of satisfaction classes for nonstandard models", *Canadian Mathematical Bulletin* 24 (1981), 283-293.

Theorem 1

Let $k \in N$, let \mathfrak{M} be a countable, recursively saturated model of *PA*. Let *P* be an element of \mathfrak{M} such that:

$$\exists a \in \mathfrak{M}[a > N \land \mathfrak{M} \models "P = \underbrace{\neg 0 \neq 0 \lor \ldots \lor 0 \neq 0 }_{a \text{ times}}"]$$

Then \mathfrak{M} has a satisfaction class containing *P*.

Source: H. Kotlarski, S. Krajewski, and A. H. Lachlan "Construction of satisfaction classes for nonstandard models", *Canadian Mathematical Bulletin* 24 (1981), 283-293.

- $P \in \Delta_0$ and $\mathfrak{M} \models Tr_{\Delta_0}(\neg P)$. In effect: our general notion of truth doesn't coincide with the partial ones.
- Negation of *P* is provable in logic.
- A satisfaction class *S* containing *P* must contain also some sentences disprovable in sentential logic. Reason: the implication " $P \Rightarrow 0 \neq 0$ " is a propositional tautology, but it can't belong to *S*.

- $P \in \Delta_0$ and $\mathfrak{M} \models Tr_{\Delta_0}(\neg P)$. In effect: our general notion of truth doesn't coincide with the partial ones.
- Negation of *P* is provable in logic.
- A satisfaction class *S* containing *P* must contain also some sentences disprovable in sentential logic. Reason: the implication " $P \Rightarrow 0 \neq 0$ " is a propositional tautology, but it can't belong to *S*.

- $P \in \Delta_0$ and $\mathfrak{M} \models Tr_{\Delta_0}(\neg P)$. In effect: our general notion of truth doesn't coincide with the partial ones.
- Negation of P is provable in logic.
- A satisfaction class *S* containing *P* must contain also some sentences disprovable in sentential logic. Reason: the implication " $P \Rightarrow 0 \neq 0$ " is a propositional tautology, but it can't belong to *S*.

- $P \in \Delta_0$ and $\mathfrak{M} \models Tr_{\Delta_0}(\neg P)$. In effect: our general notion of truth doesn't coincide with the partial ones.
- Negation of P is provable in logic.
- A satisfaction class S containing P must contain also some sentences disprovable in sentential logic. Reason: the implication "P ⇒ 0 ≠ 0" is a propositional tautology, but it can't belong to S.

Theorem 2

Let \mathfrak{M} be a countable, recursively saturated model of *PA* and let *n* be a natural number. Then \mathfrak{M} has a satisfaction class *T* such that:

$$(\mathfrak{M}, T) \models \forall \psi \in \Sigma_n [Tr_{\Sigma_n}(\psi) \equiv Tr(\psi)].$$

Source: F. Engström *Satisfaction classes in nonstandard models of first order arithmetic*, Chalmers University of Technology and Göteborg University, 2002, pp. 56-57.

Theorem 2

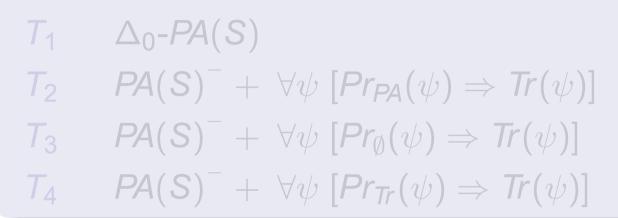
Let \mathfrak{M} be a countable, recursively saturated model of *PA* and let *n* be a natural number. Then \mathfrak{M} has a satisfaction class *T* such that:

$$(\mathfrak{M}, T) \models \forall \psi \in \Sigma_n [Tr_{\Sigma_n}(\psi) \equiv Tr(\psi)].$$

Source: F. Engström *Satisfaction classes in nonstandard models of first order arithmetic*, Chalmers University of Technology and Göteborg University, 2002, pp. 56-57.

Theorem 3

The following theories are equivalent:



- H. Kotlarski "Bounded induction and satisfaction classes", Zeitschrift für Mathematische Logik 32 (1986), 531-544.
- 2 C. Cieśliński "Truth, conservativeness, and provability", *Mind*, forthcoming.

Theorem 3

The following theories are equivalent:

$$T_1 \quad \Delta_0 - PA(S)$$

- $T_2 \quad PA(S)^- + \forall \psi \left[Pr_{PA}(\psi) \Rightarrow Tr(\psi) \right]$
- $T_3 \quad PA(S)^- + \forall \psi \left[Pr_{\emptyset}(\psi) \Rightarrow Tr(\psi) \right]$
- $T_4 \quad PA(S)^- + \forall \psi \left[Pr_{Tr}(\psi) \Rightarrow Tr(\psi) \right]$

- H. Kotlarski "Bounded induction and satisfaction classes", Zeitschrift für Mathematische Logik 32 (1986), 531-544.
- 2 C. Cieśliński "Truth, conservativeness, and provability", *Mind*, forthcoming.

Theorem 3

The following theories are equivalent:

$$T_1 \quad \Delta_0 - PA(S)$$

- $T_2 \quad PA(S)^- + \forall \psi \left[Pr_{PA}(\psi) \Rightarrow Tr(\psi) \right]$
- $T_3 \quad PA(S)^- + \forall \psi \left[Pr_{\emptyset}(\psi) \Rightarrow Tr(\psi) \right]$
- $T_4 \quad PA(S)^- + \forall \psi \left[Pr_T(\psi) \Rightarrow Tr(\psi) \right]$

- H. Kotlarski "Bounded induction and satisfaction classes", Zeitschrift für Mathematische Logik 32 (1986), 531-544.
- 2 C. Cieśliński "Truth, conservativeness, and provability", *Mind*, forthcoming.

Theorem 3

The following theories are equivalent:

$$T_1 \quad \Delta_0 - PA(S)$$

- $T_2 \quad PA(S)^- + \forall \psi \left[Pr_{PA}(\psi) \Rightarrow Tr(\psi) \right]$
- $T_{3} \quad PA(S)^{-} + \forall \psi \left[Pr_{\emptyset}(\psi) \Rightarrow Tr(\psi) \right]$
- $T_4 \quad PA(S)^- + \forall \psi \left[Pr_{Tr}(\psi) \Rightarrow Tr(\psi) \right]$

- H. Kotlarski "Bounded induction and satisfaction classes", Zeitschrift für Mathematische Logik 32 (1986), 531-544.
- 2 C. Cieśliński "Truth, conservativeness, and provability", *Mind*, forthcoming.

Theorem 3

The following theories are equivalent:

$$T_1 \quad \Delta_0 - PA(S)$$

- $T_2 \quad PA(S)^- + \forall \psi \left[Pr_{PA}(\psi) \Rightarrow Tr(\psi) \right]$
- $T_{3} \quad PA(S)^{-} + \forall \psi \left[Pr_{\emptyset}(\psi) \Rightarrow Tr(\psi) \right]$
- $T_4 \qquad PA(S)^- + \forall \psi \left[Pr_{Tr}(\psi) \Rightarrow Tr(\psi) \right]$

- H. Kotlarski "Bounded induction and satisfaction classes", Zeitschrift für Mathematische Logik 32 (1986), 531-544.
- 2 C. Cieśliński "Truth, conservativeness, and provability", *Mind*, forthcoming.

Theorem 3

The following theories are equivalent:

$$T_1 \quad \Delta_0 - PA(S)$$

- $T_2 \quad PA(S)^- + \forall \psi \left[Pr_{PA}(\psi) \Rightarrow Tr(\psi) \right]$
- $T_{3} \quad PA(S)^{-} + \forall \psi \left[Pr_{\emptyset}(\psi) \Rightarrow Tr(\psi) \right]$

$$T_4 \qquad PA(S)^- + \forall \psi \left[Pr_{Tr}(\psi) \Rightarrow Tr(\psi) \right]$$

- H. Kotlarski "Bounded induction and satisfaction classes", Zeitschrift für Mathematische Logik 32 (1986), 531-544.
- C. Cieśliński "Truth, conservativeness, and provability", *Mind*, forthcoming.

Theorem 4

Denote by *T* a theory: $PA(S)^- + \forall \psi [Pr_{Tr}^{Sent}(\psi) \Rightarrow Tr(\psi)]$. Then $T = \Delta_0 - PA(S)$.

Explanation:

" $Pr_{Tr}^{Sent}(\psi)$ " means: "x has a proof from true premises in sentential logic".

•
$$F_{t_1=t_2}(m) = \lceil sub(t_1,m) = sub(t_2,m) \rceil$$

• $F_{Tr(t)} = \begin{cases} val(t,m) & \text{if } val(t,m) \text{ is an arithmetical sentence} \\ \neg 0 \neq 0 \neg & \text{otherwise} \end{cases}$

•
$$F_{\neg\varphi}(m) = \ulcorner \neg F_{\varphi}(m) \urcorner$$

•
$$F_{\varphi \wedge \psi}(m) = \ulcorner F_{\varphi}(m) \wedge F_{\psi}(m) \urcorner$$

•
$$F_{\forall v_i < v_j \varphi}(m) = \bigwedge_{a < m_j} F_{\varphi}(m \frac{a}{m_i})$$

•
$$F_{t_1=t_2}(m) = \lceil sub(t_1,m) = sub(t_2,m) \rceil$$

• $F_{Tr(t)} = \begin{cases} val(t,m) & \text{if } val(t,m) \text{ is an arithmetical sentence} \\ \neg 0 \neq 0 \neg & \text{otherwise} \end{cases}$

•
$$F_{\neg\varphi}(m) = \ulcorner \neg F_{\varphi}(m) \urcorner$$

•
$$F_{\varphi \wedge \psi}(m) = \ulcorner F_{\varphi}(m) \wedge F_{\psi}(m) \urcorner$$

•
$$F_{\forall v_i < v_j \varphi}(m) = \bigwedge_{a < m_j} F_{\varphi}(m \frac{a}{m_i})$$

•
$$F_{t_1=t_2}(m) = \lceil sub(t_1,m) = sub(t_2,m) \rceil$$

• $F_{Tr(t)} = \begin{cases} val(t,m) & \text{if } val(t,m) \text{ is an arithmetical sentence} \\ \neg 0 \neq 0 \neg & \text{otherwise} \end{cases}$

• $F_{\neg\varphi}(m) = \ulcorner \neg F_{\varphi}(m) \urcorner$

•
$$F_{\varphi \wedge \psi}(m) = \ulcorner F_{\varphi}(m) \wedge F_{\psi}(m) \urcorner$$

•
$$F_{\forall v_i < v_j \varphi}(m) = \bigwedge_{a < m_j} F_{\varphi}(m \frac{a}{m_i})$$

•
$$F_{t_1=t_2}(m) = \lceil sub(t_1,m) = sub(t_2,m) \rceil$$

• $F_{Tr(t)} = \begin{cases} val(t,m) & \text{if } val(t,m) \text{ is an arithmetical sentence} \\ \neg 0 \neq 0 \neg & \text{otherwise} \end{cases}$

•
$$F_{\neg arphi}(m) = \ulcorner \neg F_{arphi}(m) \urcorner$$

•
$$F_{\varphi \wedge \psi}(m) = \ulcorner F_{\varphi}(m) \wedge F_{\psi}(m) \urcorner$$

•
$$F_{\forall v_i < v_j \varphi}(m) = \bigwedge_{a < m_j} F_{\varphi}(m \frac{a}{m_i})$$

•
$$F_{t_1=t_2}(m) = \lceil sub(t_1,m) = sub(t_2,m) \rceil$$

• $F_{Tr(t)} = \begin{cases} val(t,m) & \text{if } val(t,m) \text{ is an arithmetical sentence} \\ \neg 0 \neq 0 \neg & \text{otherwise} \end{cases}$

•
$$F_{\neg \varphi}(m) = \ulcorner \neg F_{\varphi}(m) \urcorner$$

•
$$F_{\varphi \wedge \psi}(m) = \ulcorner F_{\varphi}(m) \wedge F_{\psi}(m) \urcorner$$

•
$$F_{\forall v_i < v_j \varphi}(m) = \bigwedge_{a < m_j} F_{\varphi}(m \frac{a}{m_i})$$

•
$$F_{t_1=t_2}(m) = \lceil sub(t_1,m) = sub(t_2,m) \rceil$$

• $F_{Tr(t)} = \begin{cases} val(t,m) & \text{if } val(t,m) \text{ is an arithmetical sentence} \\ \neg 0 \neq 0 \neg & \text{otherwise} \end{cases}$

•
$$F_{\neg arphi}(m) = \ulcorner \neg F_{arphi}(m) \urcorner$$

•
$$F_{arphi \wedge \psi}(m) = \ulcorner F_{arphi}(m) \wedge F_{\psi}(m) \urcorner$$

•
$$F_{\forall v_i < v_j \varphi}(m) = \bigwedge_{a < m_j} F_{\varphi}(m \frac{a}{m_i})$$

For every
$$\varphi$$
, $(\mathfrak{M}, Tr) \models \varphi[m]$ iff $(\mathfrak{M}, Tr) \models Tr(F_{\varphi}(m))$.

Proof (quantifier case):

The following conditions are equivalent:

$$(\mathfrak{M}, Tr) \models \forall v_i < v_j \varphi[m],$$

- $(2) \forall a <_{\mathfrak{M}} m_j(\mathfrak{M}, Tr) \models \varphi[m \frac{a}{m_i}],$
- $() \forall a <_{\mathfrak{M}} m_j(\mathfrak{M}, Tr) \models Tr(F_{\varphi}(m\frac{a}{m_i})),$

$$(\mathfrak{M}, Tr) \models Tr(\bigwedge_{a < m_j} F_{\varphi}(m \frac{a}{m_i})),$$

 $(\mathfrak{M}, Tr) \models Tr(F_{\forall v_i < v_j \varphi}(m)).$

For every
$$\varphi$$
, $(\mathfrak{M}, Tr) \models \varphi[m]$ iff $(\mathfrak{M}, Tr) \models Tr(F_{\varphi}(m))$.

Proof (quantifier case):

The following conditions are equivalent:

$$(\mathfrak{M}, Tr) \models \forall v_i < v_j \varphi[m],$$

- $(2) \forall a <_{\mathfrak{M}} m_j(\mathfrak{M}, Tr) \models \varphi[m \frac{a}{m_i}],$
- $() \forall a <_{\mathfrak{M}} m_j(\mathfrak{M}, Tr) \models Tr(F_{\varphi}(m\frac{a}{m_i})),$

$$(\mathfrak{M}, Tr) \models Tr(\bigwedge_{a < m_j} F_{\varphi}(m \frac{a}{m_i})),$$

 $(\mathfrak{M}, Tr) \models Tr(F_{\forall v_i < v_j \varphi}(m)).$

For every
$$\varphi$$
, $(\mathfrak{M}, Tr) \models \varphi[m]$ iff $(\mathfrak{M}, Tr) \models Tr(F_{\varphi}(m))$.

Proof (quantifier case):

The following conditions are equivalent:

$$(\mathfrak{M}, Tr) \models \forall v_i < v_j \varphi[m],$$

2
$$\forall a <_{\mathfrak{M}} m_j(\mathfrak{M}, Tr) \models \varphi[m \frac{a}{m_i}],$$

$$\exists \forall a <_{\mathfrak{M}} m_j(\mathfrak{M}, Tr) \models Tr(F_{\varphi}(m\frac{a}{m_i})),$$

$$(\mathfrak{M}, Tr) \models Tr(\bigwedge_{a < m_j} F_{\varphi}(m \frac{a}{m_i})),$$

$$(\mathfrak{M}, Tr) \models Tr(F_{\forall v_i < v_j \varphi}(m)).$$

For every
$$\varphi$$
, $(\mathfrak{M}, Tr) \models \varphi[m]$ iff $(\mathfrak{M}, Tr) \models Tr(F_{\varphi}(m))$.

Proof (quantifier case):

The following conditions are equivalent:

$$(\mathfrak{M}, Tr) \models \forall v_i < v_j \varphi[m],$$

2
$$\forall a <_{\mathfrak{M}} m_j(\mathfrak{M}, Tr) \models \varphi[m \frac{a}{m_i}],$$

$$(\mathfrak{M}, Tr) \models Tr(\bigwedge_{a < m_j} F_{\varphi}(m \frac{a}{m_i})),$$

$$(\mathfrak{M}, Tr) \models Tr(F_{\forall v_i < v_j \varphi}(m)).$$

For every
$$\varphi$$
, $(\mathfrak{M}, Tr) \models \varphi[m]$ iff $(\mathfrak{M}, Tr) \models Tr(F_{\varphi}(m))$.

Proof (quantifier case):

The following conditions are equivalent:

$$(\mathfrak{M}, Tr) \models \forall v_i < v_j \varphi[m],$$

2
$$\forall a <_{\mathfrak{M}} m_j(\mathfrak{M}, Tr) \models \varphi[m \frac{a}{m_i}],$$

$$(\mathfrak{M}, Tr) \models Tr(\bigwedge_{a < m_j} F_{\varphi}(m \frac{a}{m_i})),$$

 $(\mathfrak{M}, Tr) \models Tr(F_{\forall v_i < v_j \varphi}(m)).$

For every
$$\varphi$$
, $(\mathfrak{M}, Tr) \models \varphi[m]$ iff $(\mathfrak{M}, Tr) \models Tr(F_{\varphi}(m))$.

Proof (quantifier case):

The following conditions are equivalent:

$$(\mathfrak{M}, Tr) \models \forall v_i < v_j \varphi[m],$$

2
$$\forall a <_{\mathfrak{M}} m_j(\mathfrak{M}, Tr) \models \varphi[m \frac{a}{m_i}],$$

$$\Im \forall a <_{\mathfrak{M}} m_j(\mathfrak{M}, Tr) \models Tr(F_{\varphi}(m\frac{a}{m_i})),$$

$$(\mathfrak{M}, Tr) \models Tr(\bigwedge_{a < m_j} F_{\varphi}(m \frac{a}{m_i})),$$

$$(\mathfrak{M}, Tr) \models Tr(F_{\forall v_i < v_j \varphi}(m)).$$

Proof of Theorem 4

Proof:

Let $\varphi(x)$ be a Δ_0 formula of the extended language. Assume:

 $(M, Tr) \models \exists x \varphi(x)$

Claim: there is the smallest object in (M, Tr) satisfying $\varphi(x)$.

Fix a number *a* such that $(M, Tr) \models \varphi(a)$. By the main lemma we obtain: $(M, Tr) \models Tr(F_{\varphi}(a))$. Therefore:

$$(M, Tr) \models Tr(\bigvee_{b \leqslant a} (F_{\varphi}(b) \land \bigwedge_{c < b} \neg F_{\varphi}(c))).$$

Explanation:

The formula " $F_{\varphi}(a) \Rightarrow \bigvee_{b \leq a} (F_{\varphi}(b) \land \bigwedge_{c < b} \neg F_{\varphi}(c))$ " is a propositional tautology. Since its antecedent is true, the subsequent must also be true.

Proof of Theorem 4

Proof:

Let $\varphi(x)$ be a Δ_0 formula of the extended language. Assume:

 $(M, Tr) \models \exists x \varphi(x)$

Claim: there is the smallest object in (M, Tr) satisfying $\varphi(x)$.

Fix a number *a* such that $(M, Tr) \models \varphi(a)$. By the main lemma we obtain: $(M, Tr) \models Tr(F_{\varphi}(a))$. Therefore:

$$(M, Tr) \models Tr(\bigvee_{b \leqslant a} (F_{\varphi}(b) \land \bigwedge_{c < b} \neg F_{\varphi}(c))).$$

Explanation:

The formula " $F_{\varphi}(a) \Rightarrow \bigvee_{b \leq a} (F_{\varphi}(b) \land \bigwedge_{c < b} \neg F_{\varphi}(c))$)" is a propositional tautology. Since its antecedent is true, the subsequent must also be true.

Proof:

We obtained: $(M, Tr) \models Tr(\bigvee_{b \leq a} (F_{\varphi}(b) \land \bigwedge_{c < b} \neg F_{\varphi}(c))).$ So fix *b* such that:

$$(M, Tr) \models Tr((F_{\varphi}(b) \land \land_{c < b} \neg F_{\varphi}(c))).$$

Such a *b* exists because by assumption truth is closed under sentential logic.

By the main lemma we obtain:

$$(M, Tr) \models \varphi(b) \text{ and } (M, Tr) \models \forall v < b \neg \varphi(v).$$

Question 1

Are the following theories equivalent:

$$T_1 \qquad \forall \psi [Pr_{Tr}^{Sent}(\psi) \Rightarrow Tr(\psi)]$$

$$T_2 \quad \forall \psi [Pr_{\emptyset}^{Sent}(\psi) \Rightarrow Tr(\psi)]$$

Question 2

For which arithmetics *S* it is true that:

S + "Tr is a satisfaction class" + "Logic is true" = $\Delta_0 - PA(S)$

Question 3

For which theories T

$$PA(S)^{-}$$
 + "*T* is true"

is a conservative extension of PA?

- Cezary Cieśliński 'Deflationary truth and pathologies', Journal of Philosophical Logic 39(3), 325–337, 2010.
- Cezary Cieśliński 'Truth, Conservativeness, and Provability', *Mind* 119, 409–422, 2010.
- Cezary Cieśliński The Epistemic Lightness of Truth. Deflationism and its Logic, Cambridge University Press, 2017.