
CEZARY CIE LI SKI On definable elements in models of PA

The aim of this paper is to describe the distribution of definable elements in models of PA.
The analysis of definable elements proved to be fruitful in the context of investigating the
relations between various types of induction, collection and minimalization. The classical
results in this area were obtained by Kirby and Paris in (5); see also (4) for the discussion of
parameter free induction. In addition, (2) and (3) can be recommended as a very useful,
general reference. For more results in this direction, see (1).

We start with the following definition of structures consisting of elements of a model
M definable by formulas belonging to Σn ( n).1

Definition 1.
)(MK nΣ  = {a ∈ M : ∃ϕ(x) ∈ Σn ϕ(x) defines a in M}
)(MK nΠ  = {a ∈ M : ∃ϕ(x) ∈ n ϕ(x) defines a in M}

The first useful fact concerns the relation between )(NTh
nΠ  (the  set  of  all  n

sentences true in the standard model) and )(
1

NTh
n +Σ  (an analogous set of Σn+1 sentences).

Fact 1. ∀n ∈ N )(NTh
nΠ )(

1
NTh

n +Σ

Proof. Let M )(NTh
nΠ . Let ϕ be  a Σn+1 formula true in N of the form ∃x ψ(x) . So for

some n belonging to N, N ψ(n). Since ψ(n) belongs to n, we have: M ψ(n); therefore
M ϕ.

The next two theorems state the sufficient and necessary conditions of the existence of Σn (or
n) definable, nonstandard elements in models of PA. In what follows, by „ )(MK nΣ > N” we

mean „there are nonstandard, Σn-definable elements of M”; analogously for )(MK nΠ .2

Theorem 1. For every n > 0, for every M  PA, )(MK nΣ > N iff M )(NTh
nΠ .

Proof. Assume at first, that ϕ(x)  is  a Σn formula which defines in M a nonstandard element.
Assume also that M )(NTh

nΠ . Then we have: N ∃xϕ(x), because otherwise
N ∀x¬ϕ(x), so we would obtain: M ∀x¬ϕ (x), since this last formula belongs to n

(assuming that n > 0). So we obtain a certain k ∈ N such that N ϕ(k), but M ϕ(k), since
ϕ(x) defines something nonstandard in M. However, ϕ(k) ∈ Σn, therefore M ϕ(k) by our

1 For the definition of the classes Σn and n, see e.g. (2) or (3).
2 Theorem 1 is folklore; we owe the idea of the proof of theorem 2 to H. Kotlarski and K. Zdanowski.



assumption that M )(NTh
nΠ  (cf. Fact 1). This is impossible, since ϕ(x) was to define

something nonstandard in M.
For the second implication, fix the smallest k such that M ∈ )(NTh

nΠ  (then k n). Let

ψ = ∀xϕ (x)  with ϕ(x) belonging to Σk-1, such that N ∀xϕ(x) and M ∃x¬ϕ(x). Let τ(x)
be a Σk formula which states that x is the smallest number satisfying ¬ϕ(x). Then τ(x) defines
something nonstandard in M, because if M τ(n) for some n ∈ N, then M ¬ϕ(n), but
N ϕ(n), so ϕ(n) ∈ )(

1
NTh

k −Σ . Therefore M )(
1

NTh
k −Π , because otherwise M ϕ(n). We

obtain a contradiction, because k was to be the smaller number of this kind.

Theorem 2. For every n ≥ 0, for every M  PA, )(MK nΠ  > N iff M )(
1

NTh
n+Π .

Proof.

)  Assume that ϕ(x) is a Πn formula which defines in M a nonstandard element. Assume
also that M )(

1
NTh

n+Π . Then we have: N ∃xϕ(x), because otherwise N ∀x¬ϕ (x).
Since this last formula is Πn+1, we would have: M ∀x¬ϕ(x), which is impossible. So
let k ∈ N be such that N ϕ(k). Therefore M ϕ(k); but this is a contradiction, since
ϕ(x) was to define something nonstandard in M.

)  Let n be the smallest natural number such that M )(
1

NTh
n+Π . If n = 0, we have:

N ∀xϕ(x) and M ∃x¬ϕ(x) for some formula ϕ(x) belonging to 0. Then the smallest
x such that ¬ϕ(x) is a nonstandard, 0 definable element of M.

So now let’s assume that n > 0. Let N ∀x∃y¬ϕ (y, x) and M ∃x∀yϕ (y, x) for
ϕ belonging to Σ 1. In this case for every a, if M ∀yϕ (y, a), then a > N, because
otherwise we would have for k ∈ N: M ∀yϕ (y, k). But N ∃y¬ϕ (y, k) and since this
last formula is Σn it turns out that M )(NTh

nΠ , therefore M )(NTh
nΠ , which

contradicts the choice of n.
Now take the following formula τ(z) belonging to Πn:

∀a, b[z = (a, b) ⇒ (∀y ϕ (y, a) ∧
∧ ∀w < a∃y < b¬ϕ (y, w) ∧

∧ ∀c < b∃w < a∀y < c ϕ (y, w))]

So τ(z) states in effect, that z is a pair with the following properties:

(i) z is a pair whose first element a is a witness for ∃x ∀yϕ (y, x)
(ii) the second element b of z is an upper bound for counterexamples below a
(iii) b is the smallest such upper bound.

The first two conditions uniquely identify a, the last one uniquely identifies b,  so  in
effect τ(z)  is a Πn formula defining a nonstandard element of M.



Our next result is a solution to the following problem: in which models of PA are there
elements which are essentially Πn-definable; we mean by that the elements which are Πn, but
not Σn definable.3 In effect, our result is a partial
answer to the question if the Σn-Πn hierarchy is strict.

Theorem 3. For every n, for every M  PA
If M )(

1
NTh

n+Π , then for every k ≥ n+1 )(MK kΣ ⊂ )(MK kΠ .

Proof. Fix M, n and k ≥ n+1. Let ψ(x, y) be the following formula  belonging to Πk:

∀ϕ x[(ϕ ∈ Π 1 ∧ ∃w
1−Πk

Tr (ϕ (w))) ⇒ ∃w < y
1−Πk

Tr (ϕ (w))] ∧

∧ ∃ϕ x[∃w y
1−Πk

Tr (ϕ (w)) ∧ ∀w < y-1 ¬
1−Πk

Tr (ϕ (w))]

where
1−Πk

Tr (x) is a universal formula for Π 1 sentences. The  formula ψ(x, y) states in
effect, that y is the least upper bound for witnesses for Π 1 formulas below x. By Theorem 1,
let (x) be a Σk definition of some nonstandard element of M (here we use the assumption that
M )(

1
NTh

n+Π ). Then the formula
∀x (x) ⇒ ψ(x, y)]

is  a Πk definition of some element a. Now assume that a is Σk definable by a formula

∃zχ(z, ·) . We take the following formula (w) belonging to Π 1:

∃w1,w2 < w[w = (w1,w2) ∧ χ(w1,w2)]

We have: M ∃w  (w), so by our choice of a, M ∃w < a (w). But any such w would be a

pair whose second element is a, since ∃z χ(z, ·)  defines a. This is impossible and we obtain
a contradiction.

Note that the converse to Theorem 3 is false. As a counterexample, we may take
M )(

1
NTh

n+Π  such that M )(
2

NTh
n +Π . Then by Theorem 2, )(1 MK n+Π  > N, but by

Theorem 1, )(1 MK n+Σ  = N, so )(1 MK n+Σ ⊂ )(1 MK n+Π . By Theorem 3, we have also
)(MK kΣ ⊂ )(MK kΠ  for all k ≥ n+2. So the subsequent of Theorem 3 holds, but the

antecedent is obviously false.
In a similar vein, we consider now the question: are there Σn+1 definable elements

which are not n definable. Together with the previous result our next theorem gives us in
effect the strict Σn n hierarchy. However, Theorem 4 contains also some extra information:
there is always an essentially Σn+1 definable element below an arbitrarily chosen Σn+1
definable one.

3 Note that a Σn-definable element is always Πn-definable, because if ϕ(x) is Σn and defines a, then

∀x[ϕ(x) ⇒ y = x]  is Πn and defines a.



Theorem 4. Let M  PA, let n ∈ N and let a ∈ M such that a > N and a ∈ )(1 MK n+Σ . Then
for some b < a, b ∈ )(1 MK n+Σ  and b ∉ )(MK nΠ .

Proof. Fix an appropriate M, n and a. Let ψ(z) ∈ Σn+1 and define a. Consider the following
formula (s) belonging to Σn+1:

∃z [ψ(z) ∧ ∀ϕ < z(ϕ ∈ n ⇒ (¬
n

TrΠ (ϕ (s)) ∨ ∃w < s
n

TrΠ (ϕ (w)))) ∧

∧ ∀w < s∃ϕ < z[ϕ ∈ n ∧
n

TrΠ (ϕ (w)) ∧ ∀x < w ¬
n

TrΠ (ϕ (x))]

Intuitively, the formula (s) states that:
1. s is not the smallest object satisfying some n formula below a
2. s is the smallest object with the above property.

Now we are going to show that (s) defines something below a. Let α(ϕ, s) be the formula:

¬
n

TrΠ (ϕ (s)) ∨ ∃w < s
n

TrΠ (ϕ (w))

So the formula α(ϕ, s) states that ϕ doesn’t identify s.
In order to see that (s) defines something below a, it is clearly enough to observe that:

PA ∀z∃s z∀ϕ < z[ϕ ∈ n ⇒ α(ϕ, s)]

For an indirect proof, fix z in a model M of PA such that in M:

∀s z∃ϕ < z[ϕ ∈ n ∧ ¬α(ϕ, s)]

From pigeonhole principle we obtain:

∃s1, s2 z∃ϕ < z[s1 ≠ s2 ∧ ϕ ∈ n ∧ ¬α(ϕ, s1) ∧ ¬α(ϕ, s2)]

But this means that both s1 and s2 are the smallest numbers satisfying ϕ, but nonetheless they
are different. Since this is impossible, it ends the proof.

Now we are ready to consider in general terms the question concerning the distribution of
definable elements in models of PA. In accordance with the usual convention, we write “ e⊆ ”
(“ cf⊆ ”) to denote an end (cofinal) extension of a given structure.

Theorem 5. For every n, for every M  PA:
(a) )(MK nΣ

e⊆ )(MK nΠ

(b) )(MK nΠ
cf⊆ )(1 MK n+Σ

Proof.



(a) Let ϕ(x) ∈ Σn and define a. Then the formula: ∀x[ϕ(x) ⇒ x = y]  is n and defines a.
This shows that )(MK nΣ ⊆ )(MK nΠ . As for being an initial segment, let ϕ(x) ∈ n

and define a; let ψ(x) ∈ Σn and define b. Assume also that a < b. Then a is Σn
definable by the formula:

∃x [ψ(x) ∧ ∀w < x(ϕ (w) ⇒ w = y)]

(b) The inclusion itself is obvious. So we show only that there is a n definable element
above each Σn+1 definable one.

Let a ∈ )(1 MK n+Σ . Let ψ(x)  be  a Σn+1 definition of a. If n = 0, then ψ(x) has a

form ∃yϕ (y, x)  for ϕ belonging to 0. In this case the formula “w is the smallest pair
such that ϕ(w0, w1)” is 0 and defines a number greater than a.

So now we may assume that n > 0 and our formula ψ(x) has the form:
∃s∀yϕ(y, s, x) . Then M ∃x[x = (x0, x1) ∧ ∀yϕ(y, x0, x1)]. Now let (z) be the

following formula:

∃c, d < z[z = (c, d) ∧ ∀yϕ (y, c0, c1) ∧
∀w < c∃y < d ¬ϕ (y, w0, w1) ∧

∀e < d∃w < c∀y < eϕ (y, w0, w1)]

(In our notation e.g. ”w0” denotes the left element of the pair w).
This formula defines a number z, which is a pair (c, d), where c = (·, a),

therefore z > a. In addition, z ∈ )(MK nΠ , because (z) is a n formula.

The following corollary states the sufficient condition under which the above inclusions are
proper.

Corollary 1. Let M )(
1

NTh
n+Π . Then:

(a) )(1 MK n+Σ
e⊂ )(1 MK n+Π

(b) )(MK nΠ
cf⊂ )(1 MK n+Σ

Proof.
(a) By Theorem 5a, )(1 MK n+Σ

e⊆ )(1 MK n+Π . Since M )(
1

NTh
n+Π , by Theorem 3 we

obtain: )(1 MK n+Σ
e⊂ )(1 MK n+Π , which is our desired result.

(b) We have: )(MK nΠ
cf⊆ )(1 MK n+Σ  by Theorem 5b. Since M )(

1
NTh

n+Π , we obtain

)(1 MK n+Σ  > N by Theorem 1. So by Theorem 4, )(MK nΠ
cf⊂ )(1 MK n+Σ . And that

ends the proof.

Corollary 2 formulated below is a negative result. It states that no interesting relations (no
relations of being an initial segment or having a cofinal extension) hold between n-type
structures, unless in the standard case.



Corollary 2.
(a) )(MK nΠ

e⊆ )(1 MK n+Π iff )(MK nΠ  = N
(b) )(MK nΠ

cf⊆ )(1 MK n+Π  iff )(1 MK n+Π  = N

Proof.
(a) The implication from right to left is obvious. So let’s assume that )(MK nΠ ≠ N. In

this case by Theorem 2, M )(
1

NTh
n+Π . So by Corollary 1b, there is an a ∈ )(1 MK n+Σ

such that a ∉ )(MK nΠ . Therefore a ∈ )(1 MK n+Π . But )(MK nΠ
cf⊆ )(1 MK n+Σ

(Theorem 5b), so there is a b belonging to )(MK nΠ such that b > a. Therefore it is not
the case that )(MK nΠ

e⊆ )(1 MK n+Π .
(b) The implication from right to left is obvious. So let’s assume that

)(MK nΠ
cf⊆ )(1 MK n+Π  and that )(1 MK n+Π ≠ N. So )(MK nΠ ≠ N. By Theorem 2,

M )(
1

NTh
n+Π . Therefore by Corollary 1a, )(1 MK n+Σ

e⊂ )(1 MK n+Π , so we obtain:

not )(MK nΠ
cf⊆ )(1 MK n+Π , which ends the proof, producing the desired

contradiction.

As we already remarked, structures on Σn-definable elements proved to be useful in analysing
the relations between various types of induction. A typical question worth considering in this
context was: how much induction satisfies a given Σn-structure. Obviously one can ask the
same question about n-structures. However, the next lemma leads to a negative conclusion:
such structures don’t even satisfy PA  (arithmetic without induction scheme). On a more
positive vein, the lemma will permit us to characterize )(1 MK n+Σ  as the closure of )(MK nΠ

under subtraction (which is Corollary 3).

Lemma 1. For every n ≥ 0, for every w ∈ )(1 MK n+Σ , there is an a ∈ )(MK nΠ such that
w+a ∈ )(MK nΠ .

Proof. Fix w ∈ )(1 MK n+Σ . Let ∃s∀yϕ (y, s, x)  be a Σn+1 definition of w. Pick an object a as

in the proof of Theorem 5b - then a is a pair (c, d) such that (c0, c1) satisfy ∀yϕ (y, s, x)  and
d is the smallest upper bound for counterexamples below c. Such an a belongs to )(MK nΠ .
Then w+a has the following n definition:

∃xy < s[x = a ∧ ∃z < x(z = a0 ∧ y = z1 ∧ s = x + y)]

Remember that x = a  can be written down as a n formula without parameters. As usual,
we write a0 and a1 to denote the left and the right member of the pair a.

Corollary 3. )(1 MK n+Σ is exactly the closure of )(MK nΠ under subtraction.



Proof. Obvious, from Lemma 1.

It follows in particular that for every n ≥ 0, )(MK nΠ  PA . Take simply an object w
belonging to )(1 MK n+Σ  such that w ∉ )(MK nΠ . By Lemma 1, fix an a belonging to

)(MK nΠ such that w+a ∈ )(MK nΠ . Therefore in )(MK nΠ w+a is  not a sum of a with any
other number.

Our next result is an addition to Theorem 4. We showed before that there is an
essentially Σn+1 definable element below each Σn definable one. Now we consider a special
case of a n definable element a greater that )(MK nΣ . We show that such an a determines an
essentially Σn+1-definable b which similarily will be greater than )(MK nΣ .

In te proof we will use the following fact (we write “ )(MI n ” to denote an initial
segment of M cofinal with )(MK nΣ ).4

Fact 2. For every n ≥ 1, )(MI n )(
1

MTh
n +Π

For the proof, see (3).5

Theorem 6. Let n ≥ 1. For every a ∈ )(MK nΠ , if a > )(MK nΣ , then there is a number b < a
such that b ∈ )(1 MK n+Σ and b > )(MK nΣ  and b ∉ )(MK nΠ .

Proof. Fix a ∈ )(MK nΠ such that a > )(MK nΣ . Let s be the smallest number such that no n

formula below a identifies s (in other words, let s satisfy the formula (s) used in the proof of
Theorem 4). So s < a, s ∈ )(1 MK n+Σ  and s ∉ )(MK nΣ . We now claim that s > )(MK nΣ . By
Fact 2, )(MI n )(

1
MTh

n +Π . Therefore for n ≥ 1:

)(MI n ∀x∃ϕ [ϕ ∈ 0 ∧ Tr0( ϕ (x) ) ∧ ∀w < x¬Tr0( ϕ (w) )]

It follows that s > )(MI n , therefore s > )(MK nΣ . Otherwise we would have:

M ∃ϕ < a[ϕ ∈ 0 ∧ s is the smallest object satisfying ϕ]

But this is impossible by the choice of s.
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