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Yablo’s paradox

Consider an infinite sequence of sentences Y0,Y1,Y2, . . . such that:

Y0 = ∀z > 0 ¬T (Yz),

Y1 = ∀z > 1 ¬T (Yz),

Y2 = ∀z > 2 ¬T (Yz),

...

Assume Yk is true. Then for any i > k , Yi is not true, and in particular
Yk+1 is not true. But also ∀z > k + 1Yz is not true, so Yk+1, therefore
Yk+1 is true after all - a contradiction. Since the reasoning goes for an
arbitrary k , we obtain: all Yk -s are not true. But then Y0 is true - a
contradiction.
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Yablo formulas and sentences

Definition
Y (x) is a Yablo formula in a theory S with respect to the predicate
T (x) of the language of S iff it satisfies (provably in S) the
Yablo condition, i.e. iff

S ` ∀x [Y (x) ≡ ∀z > x ¬T (Y (z))]
ϕ is a Yablo sentence in S iff ϕ is obtained by substituting a
numeral for x in Y (x).

Cezary Cieśliński Yablo’s paradox in axiomatic theories of truth Evora 2013 3 / 25



Existence of Yablo formulas

Theorem
For every theory S in LT extending Robinson’s arithmetic, there is a
Yablo formula in S.

The theorem follows from the diagonal lemma in the following form:

Lemma
Let S be a theory in LT extending Robinson’s arithmetic. Then for
every ϕ(x , y) ∈ LT there is a formula ψ(x) such that:

S ` ψ(x) ≡ ϕ(x , pψ(x)q)
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Proof of the existence theorem

Proof of the theorem.
Fix:

ϕ(x , y) := ∀z > x ¬T (sub(y ,name(z)).

By the diagonal lemma, take Y (x) such that:

S ` Y (x) ≡ ∀z > x ¬T (sub(pY (x)q,name(z))).
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Questions

Question 1 Which Yablo sentences are provable/disprovable in a
given truth theory?

Question 2 Are all Yablo sentences provably equivalent in a given
theory?

Question 3 Are Yablo sentences equivalent (provably in a given
theory) to statements of their own untruth?

Question 4 To what extent does the answer to Questions 1-3 depend
on our choice of a Yablo formula Y (x)?
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The simplest case: PAT

Fact
Let Y (x) be a Yablo formula in PAT . Then:
(a) PAT 0 ∃xY (x)
(b) PAT 0 ∃x¬Y (x)
(c) If Y (x) contains a free variable x, then for all natural numbers n

and k, if n > k, then PAT 0 Y (n)→ Y (k)

Proof.
Since T in PAT functions just as a new predicate, PAT 0 ∃xT (x) and
also PAT 0 ∃x ¬T (x), therefore both (a) and (b) follow trivially. For (c),
assume that Y (x) contains a free variable x . Then for every n and k , if
n 6= k , then pY (k)q 6= pY (n)q. Consider a model (N,T ) with
T = {Y (n)}. Then we have: (N,T ) � Y (n); (N,T ) 2 Y (k).
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Friedman-Sheard system

FS is defined as the system with the following axioms and rules:
1 ∀s, t ∈ Tmc(T (s= t) ≡ val(s)=val(t)

)
2 ∀x

(
SentT (x)→ (T¬x ≡ ¬Tx)

)
3 ∀x ∀y

(
SentT (x ∧ y)→ (T (x ∧ y) ≡ (Tx ∧ Ty))

)
4 ∀x ∀y

(
SentT (x ∨ y)→ (T (x ∨ y) ≡ (Tx ∨ Ty))

)
5 ∀v ∀x

(
SentT (∀vx)→ (T (∀vx) ≡ ∀t T (x(t/v)))

)
6 ∀v ∀x

(
SentT (∃vx)→ (T (∃vx) ≡ ∃t T (x(t/v)))

)

NEC φ
Tφ

Tφ
φ CONEC
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Yablo formulas in FS

Fact

FS− ` ∀xz[x < z → (Y (x)→ Y (z))]

Corollary
∀x , z[x < z → (T (Y (x))→ T (Y (z))]
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Yablo formulas in FS

Theorem

FS− ` ∀xz[Y (x) ≡ Y (z)].

Proof.
Assume z > x . Then Y (x)→ Y (z). In the argument for the opposite
implication:

1 Assume Y (z) and ¬Y (x)
2 Then ∀s > z ¬T (Y (s)) and ∃s > xT (Y (s)). In particular,
¬T (Y (z + 1))

3 Fix s such that s ≤ z ∧ T (Y (s))
4 By Corollary, T (Y (z + 1)) - a contradiction.
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Yablo formulas in FS

Corollary

FS− ` ∀xz[T (Y (x)) ≡ T (Y (z))].

The proof is immediate, by applying NEC and compositional axioms to
the previous Theorem. We have also:

Corollary

FS− ` ∀x [Y (x) ≡ ¬T (Y (x))].

In effect each Yablo sentence is a liar. Finally we obtain:

Fact

If FS is consistent, then:
(a) FS 0 ∃xY (x)
(b) FS 0 ∃x¬Y (x)

Cezary Cieśliński Yablo’s paradox in axiomatic theories of truth Evora 2013 11 / 25



The theory KF

1 ∀s ∀t
(
T (s = t) ≡ val(s) = val(t)

)
2 ∀s ∀t

(
T (¬s = t) ≡ val(s) 6=val(t)

)
3 ∀x

(
SentT (x)→ (T (¬¬x) ≡ Tx)

)
4 ∀x ∀y

(
SentT (x ∧ y)→ (T (x ∧ y) ≡ Tx ∧ Ty)

)
5 ∀x ∀y

(
SentT (x ∧ y)→ (T¬(x ∧ y) ≡ T¬x ∨ T¬y)

)
6-7 Similarly for disjunction

8 ∀v ∀x
(

SentT (∀vx)→ (T (∀vx) ≡ ∀t T (x(t/v)))
)

9 ∀v ∀x
(

SentT (∀vx)→ (T (¬∀vx) ≡ ∃t T (¬x(t/v)))
)

10-11 Similarly for the existential quantifier

12 ∀t
(
T (Tt) ≡ T (val(t))

)
13 ∀t

(
T¬Tt ≡ (T¬val(t) ∨ ¬SentT (val(t)))

)
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Additional axioms

Consistency

(Cons) ∀x
(

SentT (x)→ ¬(Tx ∧ T¬x)
)

Completeness

(Compl) ∀x
(

SentT (x)→ (Tx ∨ T¬x)
)
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Truth introduction and elimination

Fact
For every ϕ(x1...xn):

(T-out) KF + Cons ` ∀x1...xn[T (ϕ(x1...xn))→ ϕ(x1...xn)]

(T-in) KF + Compl ` ∀x1...xn[ϕ(x1...xn))→ T (ϕ(x1...xn))]

The fact is proved by induction on complexity of ϕ. The following
corollary can be obtained:

Corollary
Let L be such that KF ` L ≡ ¬T (L). Then:

1 KF + Cons ` L
2 KF + Compl ` ¬L
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KF - definitions and facts

Definition
For (M,T ) � KF , we denote:

T+ = T
T− = {z : ¬z ∈ T+}
M∗ = (M,T+,T−)

Definition
M∗ � sk s = t iff val(s) = val(t); similarly for negation.

M∗ � sk Tt iff val(t) ∈ T+.

M∗ � sk¬Tt iff (Sent(val(t)) and val(t) ∈ T−) or ¬Sent(val(t)).

M∗ � sk¬¬ϕ iff M∗ � skϕ.

M∗ � skϕ ∧ ψ iff M∗ � skϕ and M∗ � skψ.

M∗ � sk¬(ϕ ∧ ψ) iff M∗ � sk¬ϕ or M∗ � sk¬ψ.

Similarly for disjunction and its negation.

M∗ � sk∀xϕ(x) iff for all a ∈ M M∗ � skϕ(a).

M∗ � sk¬∀xϕ(x) iff for some a ∈ M M∗ � sk¬ϕ(a).
Similarly for the existential quantifier.
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KF -truth is well behaved

Theorem
If (M,T ) � KF, then ∀ϕ ∈ LT [M∗ � skϕ iff M∗ � T (ϕ)].

Proof.
E.g. for ϕ = ¬T (t) we have: M∗ � sk¬T (t) iff t ∈ T− ∨ ¬Sent(t) iff
¬t ∈ T+ ∨ ¬Sent(t) iff (M,T ) � T (¬t) ∨ ¬Sent(t) iff (M,T ) � T (¬T (t))
iff ¬T (t) ∈ T+ iff M∗ � skT (¬T (t)). In the inductive part, we reason by
induction on positive complexity of ϕ.
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Dual models

Definition
For (M,T ) � KF , we define:

T d = Sent − T−

Md = (M,T d)

Theorem

(a) If (M,T ) � KF, then (M,T d) � KF1− KF12
(b) If (M,T ) � KF + Cons, then (M,T d) � KF + Compl
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Yablo formulas in KF + Cons

Theorem

For every natural number n, there are formulas Y0(x), Y1(x) such that:
(a) Both Y0(x) and Y1(x) are Yablo formulas in KF + Cons.
(b) KF + Cons ` Y0(n); KF + Cons ` ¬Y1(n)

Proof.
Let n be fixed; let L be the liar sentence. Define:

Y0(x) := x = n ∨ (x > n ∧ L)
Y1(x) := x = n + 1 ∨ (x > n + 1 ∧ L)

Then (b) is trivially satisfied. The proof of (a) (for Y0(x)) is done by
analyzing cases: for a fixed x , either x < n, or x ≥ n. In the first case
both sides of the Yablo equivalence are provably false; in the second
both of them are provably true.
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Yablo formulas in KF + Compl

Observation
Let Y (x) be such that KF + Compl ` Y (x) ≡ ∀z > x ¬T (Y (z)). Then
KF + Compl ` ∀x¬Y (x).

Proof.
Work in KF + Compl .

1 Assume Y (x), so: ∀z > x ¬T (Y (z)),
2 Therefore ∀z > x + 1 ¬T (Y (z)), so Y (x + 1), but also
¬T (Y (x + 1)).

3 Since KF + Compl proves (T-in), we obtain T (Y (x + 1)) - a
contradiction.
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Yablo formulas in KF

Theorem
Let Y (x) be such that KF ` Y (x) ≡ ∀z > x ¬T (Y (z)). Then
KF + Cons ` ∀xY (x).

Proof (idea).

Fix (M,T ) � KF + Cons. (Then Md � KF + Compl .)
Assuming (M,T ) � ¬Y (a), fix b >M a such that (M,T ) � T (Y (b)).
Show that ∀z >M bY (z) /∈ T d , which means that Md � Y (b).
It follows that (a) Md � Y (b + 1) and also that
(b) Md � ¬T (Y (b + 1)).
Since (T-in) is valid in Md , from (a) we obtain: Md � T (Y (b + 1)),
which contradicts (b).
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Independence of Yablo’s sentences

We have also:

Theorem
If Y (x) is a Yablo formula in KF, then KF + CONS ` ∀z ¬T (Y (z)).

We obtain the following corollaries:

Corollary
If Y (x) is a Yablo formula in KF, then
KF + CONS ` ∀x [Y (x) ≡ ¬T (Y (x))].

Corollary
Let Y (x) be a Yablo formula in KF. Then KF 0 ∃xY (x) and
KF 0 ∃x¬Y (x).

It follows that each sentence Y (n) is independent of KF .
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Equivalence of Yablo sentences

Theorem
Let Y (x) be a Yablo formula in KF such that for every (M,T ) � KF we
have:

∀a ∈ M [M∗ � skY (a) iff M∗ � sk∀z > a ¬T (Y (z))].

Then KF ` ∀xy [Y (x) ≡ Y (y)].

In the proof the properties of partial models generated by (classical)
models of KF are heavily used.
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Summary

1 All Yablo sentences are provably equivalent in FS; they are also
provably equivalent to the statements of their own untruth.

2 KF with the completeness axiom proves (uniformly) negations of
all sentences which are Yablo in KF + COMPL.

3 In KF with the consistency axiom, properties of formulas which
are Yablo in KF + CONS depend on the choice of a Yablo formula.
However, KF + CONS proves (uniformly) all Yablo sentences
which are Yablo in KF . Moreover, such sentences are provably
equivalent to statements of their own untruth.

4 KF doesn’t decide sentences which are Yablo in KF . However, KF
proves the equivalence of Yablo sentences which are well
behaved in partial models.
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THE END

Thanks for your attention!!!
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