Yablo's paradox in axiomatic theories of truth

Cezary Cieśliński

Institute of Philosophy University of Warsaw Poland

Evora 2013

Yablo's paradox

Consider an infinite sequence of sentences Y_0, Y_1, Y_2, \ldots such that:

$$\begin{aligned} Y_0 &= \forall z > 0 \neg T(Y_z), \\ Y_1 &= \forall z > 1 \neg T(Y_z), \\ Y_2 &= \forall z > 2 \neg T(Y_z), \end{aligned}$$

÷

Assume Y_k is true. Then for any i > k, Y_i is not true, and in particular Y_{k+1} is not true. But also $\forall z > k + 1 Y_z$ is not true, so Y_{k+1} , therefore Y_{k+1} is true after all - a contradiction. Since the reasoning goes for an arbitrary k, we obtain: all Y_k -s are not true. But then Y_0 is true - a contradiction.

Yablo formulas and sentences

Definition

• Y(x) is a Yablo formula in a theory *S* with respect to the predicate T(x) of the language of *S* iff it satisfies (provably in *S*) the *Yablo condition*, i.e. iff

$$S \vdash \forall x [Y(x) \equiv \forall z > x \neg T(Y(z))]$$

φ is a Yablo sentence in S iff φ is obtained by substituting a numeral for x in Y(x).

Theorem

For every theory S in L_T extending Robinson's arithmetic, there is a Yablo formula in S.

The theorem follows from the diagonal lemma in the following form:

Lemma

Let *S* be a theory in L_T extending Robinson's arithmetic. Then for every $\varphi(x, y) \in L_T$ there is a formula $\psi(x)$ such that:

 $\boldsymbol{S} \vdash \boldsymbol{\psi}(\boldsymbol{x}) \equiv \boldsymbol{\varphi}(\boldsymbol{x}, \lceil \boldsymbol{\psi}(\boldsymbol{x}) \rceil)$

Proof of the existence theorem

Proof of the theorem. Fix:

$$\varphi(x, y) := \forall z > x \neg T(sub(y, name(z))).$$

By the diagonal lemma, take Y(x) such that:

$$S \vdash Y(x) \equiv \forall z > x \neg T(sub(\ulcorner Y(x)\urcorner, name(z))).$$

Question 1 Which Yablo sentences are provable/disprovable in a given truth theory?

Question 2 Are all Yablo sentences provably equivalent in a given theory?

Question 3 Are Yablo sentences equivalent (provably in a given theory) to statements of their own untruth?

Question 4 To what extent does the answer to Questions 1-3 depend on our choice of a Yablo formula Y(x)?

The simplest case: PAT

Fact

Let Y(x) be a Yablo formula in PAT. Then:

- (a) $PAT \nvDash \exists x Y(x)$
- (b) $PAT \nvDash \exists x \neg Y(x)$
- (c) If Y(x) contains a free variable x, then for all natural numbers n and k, if n > k, then PAT $\nvdash Y(n) \to Y(k)$

Proof.

Since *T* in *PAT* functions just as a new predicate, $PAT \nvDash \exists xT(x)$ and also $PAT \nvDash \exists x \neg T(x)$, therefore both (a) and (b) follow trivially. For (c), assume that Y(x) contains a free variable *x*. Then for every *n* and *k*, if $n \neq k$, then $\lceil Y(k) \rceil \neq \lceil Y(n) \rceil$. Consider a model (N, T) with $T = \{Y(n)\}$. Then we have: $(N, T) \vDash Y(n); (N, T) \nvDash Y(k)$.

Friedman-Sheard system

FS is defined as the system with the following axioms and rules:

$$\forall s, t \in Tm^{c}(T(s=t) \equiv val(s) = val(t)) \forall x (Sent_{T}(x) \rightarrow (T \neg x \equiv \neg Tx)) \exists \forall x \forall y (Sent_{T}(x \land y) \rightarrow (T(x \land y) \equiv (Tx \land Ty))) \exists \forall x \forall y (Sent_{T}(x \lor y) \rightarrow (T(x \lor y) \equiv (Tx \lor Ty))) \exists \forall v \forall x (Sent_{T}(\forall vx) \rightarrow (T(\forall vx) \equiv \forall t T(x(t/v)))) \exists \forall v \forall x (Sent_{T}(\exists vx) \rightarrow (T(\exists vx) \equiv \exists t T(x(t/v))))$$

NEC
$$\frac{\phi}{T\phi}$$
 $\frac{T\phi}{\phi}$ CONEC

Fact

 $FS^{-} \vdash \forall xz[x < z \rightarrow (Y(x) \rightarrow Y(z))]$

Corollary

 $\forall x, z[x < z \rightarrow (T(Y(x)) \rightarrow T(Y(z))]$

Yablo formulas in FS

Theorem

 $FS^{-} \vdash \forall xz[Y(x) \equiv Y(z)].$

Proof.

Assume z > x. Then $Y(x) \rightarrow Y(z)$. In the argument for the opposite implication:

- Assume Y(z) and $\neg Y(x)$
- 2 Then $\forall s > z \neg T(Y(s))$ and $\exists s > xT(Y(s))$. In particular, $\neg T(Y(z+1))$
- Fix *s* such that $s \leq z \wedge T(Y(s))$
- By Corollary, T(Y(z+1)) a contradiction.

Corollary

 $FS^{-} \vdash \forall xz[T(Y(x)) \equiv T(Y(z))].$

The proof is immediate, by applying NEC and compositional axioms to the previous Theorem. We have also:

Corollary

 $FS^- \vdash \forall x[Y(x) \equiv \neg T(Y(x))].$

In effect each Yablo sentence is a liar. Finally we obtain:

Fact

If FS is consistent, then:

(a)
$$FS \nvDash \exists xY(x)$$

(b) $FS \nvDash \exists x \neg Y(x)$

The theory KF

$$1 \forall s \forall t (T(s = t) \equiv val(s) = val(t))$$

$$2 \forall s \forall t (T(\neg s = t) \equiv val(s) \neq val(t))$$

$$\mathbf{3} \ \forall x \ \big(\operatorname{Sent}_T(x) \to (T(\neg \neg x) \equiv Tx) \big)$$

 $4 \quad \forall x \, \forall y \, \big(\, \operatorname{Sent}_{T}(x \wedge y) \to (\, T(x \wedge y) \equiv \, Tx \wedge \, Ty) \big)$

5
$$\forall x \forall y (\operatorname{Sent}_{T}(x \land y) \rightarrow (T \neg (x \land y) \equiv T \neg x \lor T \neg y))$$

6-7 Similarly for disjunction

8
$$\forall v \forall x (\operatorname{Sent}_T(\forall vx) \to (T(\forall vx) \equiv \forall t T(x(t/v))))$$

$$9 \quad \forall v \,\forall x \, \big(\, \operatorname{Sent}_{\mathcal{T}}(\forall vx) \to (\mathcal{T}(\neg \forall vx) \equiv \exists t \, \mathcal{T}(\neg x(t/v))) \big)$$

10-11 Similarly for the existential quantifier

$$12 \quad \forall t \left(T(Tt) \equiv T(val(t)) \right)$$

13
$$\forall t (T \neg Tt \equiv (T \neg val(t) \lor \neg Sent_T(val(t))))$$

Consistency (Cons) $\forall x (Sent_T(x) \rightarrow \neg (Tx \land T \neg x))$

Completeness

(Compl) $\forall x (\operatorname{Sent}_T(x) \to (Tx \lor T \neg x))$

Truth introduction and elimination

Fact

For every
$$\varphi(x_1...x_n)$$
:
(T-out) $KF + Cons \vdash \forall x_1...x_n[T(\varphi(x_1...x_n)) \rightarrow \varphi(x_1...x_n)]$
(T-in) $KF + Compl \vdash \forall x_1...x_n[\varphi(x_1...x_n)) \rightarrow T(\varphi(x_1...x_n))]$

The fact is proved by induction on complexity of φ . The following corollary can be obtained:

Corollary

Let *L* be such that $KF \vdash L \equiv \neg T(L)$. Then:

•
$$KF + Cons \vdash L$$

2
$$KF + Compl \vdash \neg L$$

KF - definitions and facts

Definition

For $(M, T) \vDash KF$, we denote:

•
$$T^+ = T$$

•
$$T^- = \{z : \neg z \in T^+\}$$

•
$$M^* = (M, T^+, T^-)$$

Definition

•
$$M^* \vDash_{sk} s = t$$
 iff $val(s) = val(t)$; similarly for negation.

•
$$M^* \vDash_{sk} Tt$$
 iff $val(t) \in T^+$.

•
$$M^* \vDash_{sk} \neg Tt$$
 iff $(Sent(val(t)) \text{ and } val(t) \in T^-)$ or $\neg Sent(val(t))$.

•
$$M^* \vDash_{sk} \neg \neg \varphi$$
 iff $M^* \vDash_{sk} \varphi$.

•
$$M^* \vDash_{sk} \varphi \land \psi$$
 iff $M^* \vDash_{sk} \varphi$ and $M^* \vDash_{sk} \psi$.

•
$$M^* \vDash_{sk} \neg (\varphi \land \psi)$$
 iff $M^* \vDash_{sk} \neg \varphi$ or $M^* \vDash_{sk} \neg \psi$.

Similarly for disjunction and its negation.

•
$$M^* \vDash_{sk} \forall x \varphi(x)$$
 iff for all $a \in M M^* \vDash_{sk} \varphi(a)$.

• $M^* \vDash_{e_k} \neg \forall x \varphi(x)$ iff for some $a \in M M^* \vDash_{e_k} \neg \varphi(a)$. Cezary Cieśliński Yablo's paradox in axiomatic theories of truth

Theorem

If $(M, T) \vDash KF$, then $\forall \varphi \in L_T [M^* \vDash_{sk} \varphi \text{ iff } M^* \vDash T(\varphi)]$.

Proof.

E.g. for $\varphi = \neg T(t)$ we have: $M^* \vDash_{sk} \neg T(t)$ iff $t \in T^- \lor \neg Sent(t)$ iff $\neg t \in T^+ \lor \neg Sent(t)$ iff $(M, T) \vDash T(\neg t) \lor \neg Sent(t)$ iff $(M, T) \vDash T(\neg T(t))$ iff $\neg T(t) \in T^+$ iff $M^* \vDash_{sk} T(\neg T(t))$. In the inductive part, we reason by induction on positive complexity of φ .

Dual models

Definition

- For $(M, T) \vDash KF$, we define:
 - $T^d = Sent T^-$
 - $M^d = (M, T^d)$

Theorem

- (a) If $(M, T) \vDash KF$, then $(M, T^d) \vDash KF1 KF12$
- **(b)** If $(M, T) \vDash KF + Cons$, then $(M, T^d) \vDash KF + Compl$

Theorem

For every natural number n, there are formulas $Y_0(x)$, $Y_1(x)$ such that:

- (a) Both $Y_0(x)$ and $Y_1(x)$ are Yablo formulas in KF + Cons.
- **(b)** $KF + Cons \vdash Y_0(n); KF + Cons \vdash \neg Y_1(n)$

Proof.

Let *n* be fixed; let *L* be the liar sentence. Define:

•
$$Y_0(x) := x = n \lor (x > n \land L)$$

•
$$Y_1(x) := x = n + 1 \lor (x > n + 1 \land L)$$

Then (b) is trivially satisfied. The proof of (a) (for $Y_0(x)$) is done by analyzing cases: for a fixed *x*, either x < n, or $x \ge n$. In the first case both sides of the Yablo equivalence are provably false; in the second both of them are provably true.

Yablo formulas in KF + Compl

Observation

Let Y(x) be such that $KF + Compl \vdash Y(x) \equiv \forall z > x \neg T(Y(z))$. Then $KF + Compl \vdash \forall x \neg Y(x)$.

Proof.

Work in *KF* + *Compl*.

- Assume Y(x), so: $\forall z > x \neg T(Y(z))$,
- Therefore $\forall z > x + 1 \neg T(Y(z))$, so Y(x + 1), but also $\neg T(Y(x + 1))$.
- Since KF + Compl proves (**T-in**), we obtain T(Y(x + 1)) a contradiction.

Theorem

Let Y(x) be such that $KF \vdash Y(x) \equiv \forall z > x \neg T(Y(z))$. Then $KF + Cons \vdash \forall xY(x)$.

Proof (idea).

- Fix $(M, T) \vDash KF + Cons.$ (Then $M^d \vDash KF + Compl.$)
- Assuming $(M, T) \vDash \neg Y(a)$, fix $b >_M a$ such that $(M, T) \vDash T(Y(b))$.
- Show that $\forall z >_M bY(z) \notin T^d$, which means that $M^d \vDash Y(b)$.
- It follows that (a) $M^d \models Y(b+1)$ and also that (b) $M^d \models \neg T(Y(b+1))$.
- Since (**T-in**) is valid in M^d , from (a) we obtain: $M^d \models T(Y(b+1))$, which contradicts (b).

Independence of Yablo's sentences

We have also:

Theorem

If Y(x) is a Yablo formula in KF, then KF + CONS $\vdash \forall z \neg T(Y(z))$.

We obtain the following corollaries:

Corollary

If Y(x) is a Yablo formula in KF, then KF + CONS $\vdash \forall x[Y(x) \equiv \neg T(Y(x))].$

Corollary

Let Y(x) be a Yablo formula in KF. Then KF $\nvdash \exists x Y(x)$ and KF $\nvdash \exists x \neg Y(x)$.

It follows that each sentence Y(n) is independent of KF.

Cezary Cieśliński

Yablo's paradox in axiomatic theories of truth

Equivalence of Yablo sentences

Theorem

Let Y(x) be a Yablo formula in KF such that for every $(M, T) \vDash KF$ we have:

$$\forall a \in M \ [M^* \vDash_{sk} Y(a) \ iff \ M^* \vDash_{sk} \forall z > a \neg T(Y(z))].$$

Then $KF \vdash \forall xy \ [Y(x) \equiv Y(y)].$

In the proof the properties of partial models generated by (classical) models of KF are heavily used.

Summary

- All Yablo sentences are provably equivalent in *FS*; they are also provably equivalent to the statements of their own untruth.
- *KF* with the completeness axiom proves (uniformly) negations of all sentences which are Yablo in *KF* + COMPL.
- In KF with the consistency axiom, properties of formulas which are Yablo in KF + CONS depend on the choice of a Yablo formula. However, KF + CONS proves (uniformly) all Yablo sentences which are Yablo in KF. Moreover, such sentences are provably equivalent to statements of their own untruth.
- KF doesn't decide sentences which are Yablo in KF. However, KF proves the equivalence of Yablo sentences which are well behaved in partial models.

References

- Cezary Cieśliński 'Yablo sequences in truth theories', in K.Lodaya (ed.), Logic and Its Applications, Lecture Notes in Computer Science LNCS 7750, 127–138, Springer, 2013.
- Cezary Cieśliński and Rafał Urbaniak 'Gödelizing the Yablo sequence', Journal of Philosophical Logic 42(5), 679–695, 2013.

THE END

Thanks for your attention!!!