
Believability theories
Corrigendum to: The Epistemic Lightness of Truth.

Deflationism and its Logic

Cezary Cieśliński

In (Cieśliński, 2017, p. 254) the following definition of a believability theory
over K is presented:

Definition 1 Let K be an axiomatisable extension of PA in the language
LK (which is possibly richer than LPA). Denote as LK,B the extension of LK

with a new one-place predicate ‘B’. Let KB be a theory K formulated in the
language LK,B.

• We denote as Bel(K)− the theory in the language LK,B which extends
KB with the following axioms:

(A1) ∀ψ ∈ LK,B[KB ` ψ → B(ψ)]

(A2) ∀ϕ, ψ ∈ LK,B[
(
B(ϕ) ∧B(ϕ→ ψ)

)
→ B(ψ)]

In addition, the theory Bel(K)− has the following rules of inference:

nec
` φ
` B(φ)

` ∀xBφ(x)

` B
(
∀xφ(x)

) gen

• We denote as Bel(K) a theory which is exactly like Bel(K)−, except
that it contains all the axioms of induction for formulas of LK,B.

In general, results about believability of various statements depend on the
choice of K. Later in the book it is claimed that Bel(PA) permits us to prove
the believability of reflection principles for Peano arithmetic and Bel(TB−)
proves the believability of all the axioms of CT (the classical compositional
truth theory with full extended induction).

In fact, however, both results require iterating believability. This operation
is defined in the first section of this note, where (for illustration) I derive
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also the believability of uniform reflection for Peano arithmetic. Similarly,
deriving the believability of all the axioms of CT can be achieved in this
framework by iterating believability over TB−.

In the second section of this Corrigendum I present a slightly modified ap-
proach to believability which is the one I currently favour. Namely, I intro-
duce the theory Bel∗(K), in which the gen rule is replaced with an appro-
priate axiom. Then I show how to obtain both the believability of reflection
and the believability of CT directly in Bel∗(K), without any need of further
iterations.

1 Iterating believability

Definition 2

• Let Bel0(PA)− be Bel(PA)−,

• Let Beln+1(PA)− be the theory which is exactly like Bel(PA)−, except
that its first axiom has the following form:

(A1) ∀ψ ∈ LPAB

[(
Beln(PA)− ` B(ψ)

)
→ B(ψ)

]
In effect, in each successor step we declare that the internal theory of the
theory previously obtained is believable.

We are going to show that the believability of the uniform reflection for PA
is provable after the first iteration is made; in other words, it is provable in
Bel1(PA)−.

Theorem 3 Bel1(PA)− ` ∀ϕ(x) ∈ LPA B
(
∀x[PrPA(ϕ(x))→ ϕ(x)]

)
.

Proof. Working in Bel1(PA)−, we note that:

(*) ∀ϕ(x) ∈ LPA Bel0(PA)− ` B
(
∀x∀d B(ProvPA(d, ϕ(x))→ ϕ(x))

)
.

The reason is (we observe it inside Bel1(PA)!) that given ϕ(x) ∈ LPA, we
can argue as follows in Bel0(PA)−:

• ∀x, d PA ` ProvPA(d, ϕ(x))→ ϕ(x),1

1Cf. the argument given on p. 263 of (Cieśliński, 2017).
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• ∀x, d B
(
ProvPA(d, ϕ(x))→ ϕ(x)

)
(by the axiom (A1) of Bel0(PA)),

• hence (*) is obtained by nec rule of Bel0(PA) applied to the previous
line.

From (*) we conclude that:

(**) ∀ϕ(x) ∈ LPA Bel0(PA)− ` B
(
∀x∀d (ProvPA(d, ϕ(x))→ ϕ(x))

)
.

Observe that (**) is the result of applying the rule gen of Bel0(PA)− to (*).

It follows that:

(***) ∀ϕ(x) ∈ LPA Bel0(PA)− ` B
(
∀x[PrPA(ϕ(x))→ ϕ(x)]

)
.

From (***) by the axiom (A1) of Bel1(PA)− we obtain the be-
lievability of the uniform reflection principle for Peano arithmetic:
∀ϕ(x) ∈ LPA B

(
∀x[PrPA(ϕ(x))→ ϕ(x)]

)
. �

2 Believability without the generalisation

rule

In this section the theory Bel∗(K) is introduced, which (in my opinion) is
better than Bel(K) as a formal description of the behaviour of the believ-
ability predicate. As before, we assume that K is an axiomatisable extension
of PA in the language LK . The expressions ‘LK,B’ and ‘KB’ also retain their
previous meanings.

Definition 4 We denote as Bel∗(K) the theory in the language LK,B which
extends KB with the following axioms:

(A1) ∀ψ ∈ LK,B[KB ` ψ → B(ψ)]

(A2) ∀ϕ, ψ ∈ LK,B[
(
B(ϕ) ∧B(ϕ→ ψ)

)
→ B(ψ)]

(A3) ∀ϕ(x) ∈ LK,B

(
B
(
∀xBϕ(x)

)
→ B

(
∀xϕ(x)

))
.
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In addition, the theory Bel∗(K) has the following rule of inference:

nec
` ψ
` B(ψ)

The difference with Bel(K) is that now axiom (A3) replaces the gen rule.
Indeed, the intuitive motivation for the axiom is exactly the same as the
motivation for the rule described on p. 255 of (Cieśliński, 2017).

For Bel∗(K), we obtain the following counterpart of Theorem 13.4.3 (see
(Cieśliński, 2017, p. 257)):

Theorem 5 If N is expandable to a model N∗ of K, then N∗ is expandable
to a model of IntBel∗Con(K).

The proof (due to Mateusz  Le lyk) consists in adapting my proof of Theorem
13.4.3. As in the book, the expansion (N∗, B) satisfying IntBel∗Con(K) can be
obtained as a supervaluational model. We adopt the following definition.

Definition 6 For a model N∗ of K, we define:

• B0 = KB,

• Bn+1 = {ψ : ∀Z ⊇ Bn[if (N∗, Z) |= (A1)−(A3), (con), then (N∗, Z) |=
ψ]},

• Bω =
⋃

n∈N
Bn.

Then (N∗, Bω) |= IntBel∗Con(K). The successor steps permit us to handle the
nec rule.

2.1 Application: reflection principles

The first observation is that Bel∗(PA) is quite efficient in proving, within
the scope of of ‘B’, strong reflection principles. Let me start with the fol-
lowing definition of a sequence of stronger and stronger theories, obtained by
iterating the uniform reflection principle.
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Definition 7

• S0 = PAB

• Sn+1 = Sn ∪ {∀x[PrSn(ϕ(x))→ ϕ(x)] : ϕ(x) ∈ LPAB}.

In other words, we start with PAB (which is PA in the language with the
new predicate ‘B’), and then, at each stage, we add the uniform reflection
principle for the preceding theory, for formulas of the language of PAB.

It turns out that Bel∗(PA) proves the believability of each theory Sn. Ac-
cordingly, Bel∗(PA) proves the believability of uniform reflection not just for
PA, but for each Sn.

Theorem 8 For every natural number n, Bel∗(PA) ` ∀ϕ(x) ∈
LPAB B

(
∀x[PrSn(ϕ(x))→ ϕ(x)]

)
.

Proof. For n = 0, we argue as follows in Bel∗(PA):

1. ∀ϕ(x) ∈ LPAB ∀x∀d PAB ` ProvPAB(d, ϕ(x)) → ϕ(x) (provable in
PAB),

2. ∀ϕ(x) ∈ LPAB ∀x∀d B
(
ProvPAB(d, ϕ(x))→ ϕ(x)

)
(by (A1)),

3. B
(
∀ϕ(x) ∈ LPAB ∀x∀d B

(
ProvPAB(d, ϕ(x))→ ϕ(x)

))
(by nec)

4. ∀ϕ(x) ∈ LPAB B
(
∀x∀d B

(
ProvPAB(d, ϕ(x)) → ϕ(x)

))
(by (A1),

(A2)),

5. ∀ϕ(x) ∈ LPAB B
(
∀x∀d

(
ProvPAB(d, ϕ(x))→ ϕ(x)

))
(by (A3)),

6. ∀ϕ(x) ∈ LPAB B
(
∀x
(
PrPAB(ϕ(x))→ ϕ(x)

))
(by (A1), (A2)).

For the inductive part, assume that for a fixed n:

Bel∗(PA) ` ∀ϕ(x) ∈ LPAB B
(
∀x[PrSn(ϕ(x))→ ϕ(x)]

)
.

We claim that

Bel∗(PA) ` ∀ϕ(x) ∈ LPAB B
(
∀x[PrSn+1(ϕ(x))→ ϕ(x)]

)
.
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Working in Bel∗(PA), it is enough to demonstrate that:2

∀ϕ(x) ∈ LPAB ∀x∀d B
(
ProvSn+1(d, ϕ(x))→ ϕ(x)

)
.

Fixing x, d and ϕ(x) ∈ LPAB, we consider cases.

Case 1: If ¬ProvSn+1(d, ϕ(x)), then already PA proves that this is so and
thus B

(
¬ProvSn+1(d, ϕ(x))

)
, which by (A1) and (A2) yields the desired

conclusion that B
(
ProvSn+1(d, ϕ(x))→ ϕ(x)

)
.

Case 2: If ProvSn+1(d, ϕ(x)), then the following two observations lead to the
conclusion that B

(
ϕ(x)

)
:

(a) Every axiom of Sn+1 used in d is believable.

(b) Believability is preserved under Modus Ponens.

For (a), note that by the inductive assumption we have:

∀ψ ∈ LPABPrSn(ψ)→ B(ψ),3

thus if ψ is an axiom of Sn+1 which is also an axiom of Sn, we have B(ψ).
On the other hand, if ψ is an axiom of Sn+1 but not of Sn, then it must
have the form ‘∀x[PrSn(ϕ(x)) → ϕ(x)]’ and we have B(ψ) by the inductive
assumption.

In this way we conclude that B
(
ϕ(x)

)
. Therefore also in Case 2 we obtain

B
(
ProvSn+1(d, ϕ(x))→ ϕ(x)

)
, as required. �

2.2 Application: recovering compositional axioms
from disquotational principles

Let us start with the following fact (‘x ∈ V ar’ reads ‘x is a variable’).

Fact 9 Bel∗(TB−) ` ∀ϕ(x) ∈ LPA∀a ∈ V arB
(
∀a(T (ϕ(a)) ≡ ϕ(a))

)
.

2After this, the proof proceeds exactly as in the step for n = 0.
3Assume that PrSn

(ψ). Then PA ` PrSn
(ψ) and so B(PrSn

(ψ)). By the inductive
assumption we have: B(PrSn(ψ)→ ψ), so by (A2) we obtain B(ψ).
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Proof. We reason in Bel∗(TB−) as follows:

(1) ∀ϕ(x) ∈ LPA∀x TB− ` T (ϕ(x)) ≡ ϕ(x)

(2) ∀ϕ(x) ∈ LPA∀x B
(
T (ϕ(x)) ≡ ϕ(x)

)
(3) B

(
∀ϕ(x) ∈ LPA∀x B

(
T (ϕ(x)) ≡ ϕ(x)

))
(4) ∀ϕ(x) ∈ LPAB

(
∀xB

(
T (ϕ(x)) ≡ ϕ(x)

))
(5) ∀ϕ(x) ∈ LPAB

(
∀x(T (ϕ(x)) ≡ ϕ(x))

)
.

(6) ∀ϕ(x) ∈ LPA∀a ∈ V arB
(
∀a(T (ϕ(a)) ≡ ϕ(a))

)
(1) is provable already in PA; (2) follows from (1) by axiom (A1); (3) is
obtained from (2) by nec; (5) is obtained from (4) by (A3), (6) follows from
(5) by (A1) and (A2) (renaming of variables produces logically equivalent
statements).

For (4) we argue as follows: fix ϕ(x) ∈ LPA, then by Σ1 completeness PA `
ϕ(x) ∈ LPA, hence B(ϕ(x) ∈ LPA) by (A1). Denote as F

(
ϕ(x)

)
the following

sentence:

ϕ(x) ∈ LPA →
(
∀ϕ(x) ∈ LPA∀x B

(
T (ϕ(x)) ≡ ϕ(x)

)
→ ∀xB

(
T (ϕ(x)) ≡

ϕ(x)
))

.

Observe that ∅ ` F
(
ϕ(x)

)
; therefore by (A1) we have B

(
F
(
ϕ(x)

))
and

hence by two applications of (A2) we obtain B
(
∀xB

(
T (ϕ(x)) ≡ ϕ(x)

))
. �

With the fact at hand, we can demonstrate that Bel∗(TB−) proves the be-
lievability of compositional principles of truth.

Theorem 10 Bel∗(TB−) ` B(CT ).

The expression ‘B(CT )’ is a shorthand of ‘truth-theoretic axioms of CT are
believable and for every ϕ ∈ LT induction for ϕ is believable’.

Proof. We start by showing that (‘Tm(t)’ reads ‘t is a constant term’):
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Bel∗(TB−) ` B
(
∀t, s

[
Tm(t) ∧ Tm(s)→ (T (t = s) ≡ val(t) = val(s))

])
.

The reasoning (carried out in Bel∗(TB−)) goes as follows:

(1) ∀t, s TB− ` Tm(t) ∧ Tm(s)→ (T (t = s) ≡ val(t) = val(s)) (provable in PA)
(2) ∀t, s B

(
Tm(t) ∧ Tm(s)→ (T (t = s) ≡ val(t) = val(s))

)
(axiom (A1))

(3) B

(
∀t, s B

(
Tm(t) ∧ Tm(s)→ (T (t = s) ≡ val(t) = val(s))

))
(by nec)

(4) B

(
∀t, s

[
Tm(t) ∧ Tm(s)→ (T (t = s) ≡ val(t) = val(s))

])
(by (A3))

As for compositional axioms for sentential connectives, only the case of nega-
tion will be considered here. We claim that:

Bel∗(TB−) ` B
(
∀ψ[T (¬ψ) ≡ ¬T (ψ)]

)
.

The reasoning (carried out in Bel∗(TB−)) goes as follows:

(1) ∀ψ TB− ` T (¬ψ) ≡ ¬T (ψ) (provable in PA)
(2) ∀ψ B

(
T (¬ψ) ≡ ¬T (ψ)

)
(axiom (A1))

(3) B

(
∀ψ B

(
T (¬ψ) ≡ ¬T (ψ))

)
(by nec)

(3) B
(
∀ψ[T (¬ψ) ≡ ¬T (ψ)]

)
(by (A3))

We now consider the case of the existential quantifier. It will be demonstrated
that:

Bel∗(TB−) ` B
(
∀ϕ(x) ∈ LPA∀a ∈ V ar

[
T (∃aϕ) ≡ ∃xT (ϕ(x))

])
.

Working in Bel∗(TB−), we reason as follows:

(1) ∀ϕ(x) ∈ LPA∀a ∈ V ar B
(
∀a(T (ϕ(a)) ≡ ϕ(a))

)
(Fact 9)

(2) ∀ϕ(x) ∈ LPA∀a ∈ V ar B
(
∃aT (ϕ(a)) ≡ ∃aϕ(a)

)
((A1) and (A2), (1))

(3) ∀ϕ(x) ∈ LPA∀a ∈ V ar B
(
T (∃aϕ(a)) ≡ ∃aϕ(a)

)
(A1)

(4) ∀ϕ(x) ∈ LPA∀a ∈ V ar B
(
T (∃aϕ(a)) ≡ ∃aT (ϕ(a))

)
(from (2) and (3))

(5) ∀ϕ(x) ∈ LPA∀a ∈ V ar B
(
T (∃aϕ(a)) ≡ ∃xT (ϕ(x))

)
(variable renaming)

(6) B

(
∀ϕ(x) ∈ LPA∀a ∈ V ar B

(
T (∃aϕ(a)) ≡ ∃xT (ϕ(x))

))
(nec)

(7) B

(
∀ϕ(x) ∈ LPA∀a ∈ V ar

[
T (∃aϕ(a)) ≡ ∃xT (ϕ(x))

])
(by (A3))

In the last part of the proof, we check the believability of the extended
induction (for the language LT with the truth predicate). We demonstrate
that:
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Bel∗(TB−) ` ∀ϕ(x) ∈ LTB

([
ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x+ 1))

]
→ ∀xϕ(x)

)
.

We reason in Bel∗(TB−) as follows:

(1) ∀ϕ(x) ∈ LT ∀x TB− `
[
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x+ 1)

)]
→ ϕ(x)

(2) ∀ϕ(x) ∈ LT ∀x B
([
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x+ 1)

)]
→ ϕ(x)

)

(3) B

(
∀ϕ(x) ∈ LT ∀x B

([
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x+ 1)

)]
→ ϕ(x)

))

(4) ∀ϕ(x) ∈ LT B

(
∀x B

([
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x+ 1)

)]
→ ϕ(x)

))

(5) ∀ϕ(x) ∈ LTB

([
ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(x+ 1))

]
→ ∀xϕ(x)

)
.

For (1), observe that for every ϕ(x) ∈ LT and for every x, the formula
in question is provable already in pure logic (hence also in TB−). (2) is
obtained from (1) by (A1), in (3) the nec rule is applied. For (4), see the
justification of a very similar step (4) in the proof of Fact 9. Finally, (5) is
obtained from (4) by (A3). �
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