
T-equivalences for positive sentences

Cezary Cieśliński
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Disquotational truth

Disquotational theories of truth can be based on the local or the
uniform T-schema.

(Tr-local) Tr(pϕq) ≡ ϕ

(Tr-uniform) ∀x1...xn[Tr(pϕ(x1...xn)q) ≡ ϕ(x1...xn)]

Disquotational axioms are then defined as all formulas obtained
from (Tr-local) or (Tr-uniform) by substituting for ϕ formulas
(possibly with the truth predicate) forming an appropriate
recursive substitution class.

Cezary Cieśliński T-equivalences for positive sentences



Notation

In what follows the following notation will be used:
LPA,SentPA - arithmetical formulas and sentences.
LTr ,SentTr - formulas and sentences of the language of
arithmetic extended with “Tr ”.
L+

Tr ,Sent+Tr - positive formulas and sentences
Indϕ - induction for a formula ϕ
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Basic variants of disquotational theories

Definition 1
TB(PA) = PA ∪ {Tr(pϕq) ≡ ϕ : ϕ ∈ LPA} ∪ IndLTr

UTB(PA) = PA ∪ {∀x1...xn[Tr(pϕ(x1...xn)q) ≡ ϕ(x1...xn)] :
ϕ ∈ LPA} ∪ IndLTr

Fact 2
Both TB(PA) and UTB(PA) are conservative extensions of PA.
Both theories are also truth-theoretically weak.

Cezary Cieśliński T-equivalences for positive sentences



Reactions

Arithmetical weakness
Conservativeness is a desirable property of truth theories.
Our notion of truth, even introduced via disquotational
axioms, can be used in proving new arithmetical theorems
(in fact arithmetical strength is desirable).

Truth-theoretic weakness

Truth-theoretic strength is not really required.
The main point of having the notion of truth is being able to
prove truth-involving generalizations
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The theory PUTB

Definition 3
A formula ϕ of the language LTr is positive iff every
occurrence of “Tr ” in ϕ lies within a scope of even number
of negations.
PUTB is a theory with full induction, taking as axioms all
positive substitutions of (Tr-uniform)

Theorem 4
PUTB is arithmetically equivalent with KF. In particular, the
truth predicate of KF is definable in PUTB.

Source: Halbach,V. “Reducing compositional to disquotational truth”,
The Review of Symbolic Logic (2009), 2: 786-798.
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Conservativeness theorem

Definition 5

PTB = PA ∪ {Tr(pϕq) ≡ ϕ : ϕ ∈ Sent+Tr} ∪ {Indϕ : ϕ ∈ LTr}.

Theorem 6
PTB is conservative over PA.

Cezary Cieśliński T-equivalences for positive sentences



Recursive saturation

A set of formulas p(x ,a) with a parameter a is a type over
a model M iff every finite subset of p(x ,a) is realized in M.
A model M is recursively saturated iff all recursive types
over M are realized.
Every model M has a recursively saturated elementary
extension of the same cardinality.
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General strategy

We show that:

(∗) For an arbitrary finite Z ⊆ PTB and for an arbitrary
recursively saturated model M, M can be extended to a
model of LTr in such a way as to make all sentences in Z
true.

Then (for ψ ∈ LPA): if PTB ` ψ, then for some finite
Z ⊆ PTB, Z ` ψ; therefore by (∗), PA ` ψ.
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Translation function

Definition 7
We define a translation function t(a, ϕ) - for ϕ belonging to LTr ,
it gives as value an arithmetical formula with a parameter a.

t(a, pt = sq) = pt = sq
t(a,Tr(t)) = pt ∈ aq
t(a,¬ψ) = ¬t(a, ψ), similarly for conjunction and
disjunction
t(a, ∃xψ) = ∃xt(a, ψ), similarly for the general quantifier.
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Basic facts

Fact 8
Let d ∈ M. Let K = (M,T ) with T = {a : M |= a ∈ d}. Then for
every ϕ ∈ LTr , for every valuation v in M, we have:

M |= t(d , ϕ)[v ] iff K |= ϕ[v ]

The proof is by induction on the complexity of ϕ. If e.g.
ϕ = Tr(t), then we have: M |= t(d ,Tr(t))[v ] iff M |= t ∈ d [v ] iff
valM(t , v) ∈ T iff K |= Tr(t)[v ]. The proof of the other clauses is
routine.
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Basic facts

Fact 9
Let M1 = (M,A),M2 = (M,B) with A,B being subsets of M
such that A ⊆ B. Then for every valuation v in M, for every
ϕ(x1...xn) ∈ L+

Tr , we have: if M1 |= ϕ(x1...xn)[v ], then
M2 |= ϕ(x1...xn)[v ].

The proof consists in showing that every formula in L+
Tr is

logically equivalent with some strictly positive formula, i.e. a
formula in which no occurrence of “Tr ” is negated. Then it is
enough to prove by induction that every strictly positive formula
satisfies the above condition.
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Proof of conservativeness theorem

Definition 10
Given a recursively saturated model M, we define a family of
recursive types over M, a family of elements realizing these
types and a family of models Mn which extend M to a model of
LTr .

1 p0(x) = {ϕ ∈ x ≡ ϕ : ϕ ∈ SentPA} ∪ {∀w(w ∈ x ⇒ w ∈
SentPA}
d0 realizes p0(x)
T0 = {a : M |= a ∈ d0}
M0 = (M,T0)

2 pn+1(x ,dn) = {ϕ ∈ x ≡ t(dn, ϕ) : ϕ ∈ Sent+Tr} ∪ {∀z(z ∈
dn ⇒ z ∈ x)} ∪ {∀z(z ∈ x ⇒ z ∈ Sent+Tr )}
dn+1 realizes pn+1(x ,dn)
Tn+1 = {a : M |= a ∈ dn+1}
Mn+1 = (M,Tn+1)
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Proof of conservativeness theorem

Observation
For every n, a type pn, a model Mn and an element dn are well
defined. We have also:

∀ϕ ∈ SentTr∀n [M |= t(dn, ϕ) iff Mn |= ϕ].
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Proof of conservativeness theorem

Let Z be a finite subset of PTB. Given a recursively saturated
model M, we will find an LTr -extension of M which makes Z
true. Let A = {Tr(pϕ0q) ≡ ϕ0 ... Tr(pϕkq) ≡ ϕk} be a set of all
T-sentences in Z . Fix n as the smallest natural number such
that:

∀i ≤ k [Mn |= ϕi ∨ ¬∃l ∈ NMl |= ϕi ]

The existence of such a number follows from Fact 9 together
with the observation that T0 ⊆ T1 ⊆ T2 .... Then we observe
that Mn+1 |= Z . Since Tn+1 is parametrically definable in M, it is
inductive. We have also:

∀i ≤ kMn+1 |= Tr(pϕiq) ≡ ϕi .

Cezary Cieśliński T-equivalences for positive sentences



Additional comments

Comment 1. All models Mn satisfy the condition “Tr(ψ)⇒ ψ”
for all ψ ∈ LTr , so the same proof establishes
conservativeness of a theory containing not only
true-positive biconditionals with induction, but also
all instances (not just the positive ones) of the
“Tr-out” schema.

Comment 2. A slightly modified construction gives a proof of a
stronger result (in the formulation below ~z stands
for a sequence of variables).
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A strengthened version

Theorem 11
PTB ∪ {∀~z[Tr(ϕ(~z))⇒ ϕ(~z)] : ϕ(~z) ∈ LTr} is conservative over
PA.

The proof involves a different characterization of the set of
types. Fixing a model M and a nonstandard a ∈ M, we put:

p0(x ,a) = {∀~z < a[ϕ(~z) ∈ x ≡ ϕ(~z)] : ϕ(~z) ∈
LPA} ∪ {∀w [w ∈ x ⇒ ∃ϕ(~z) ∈ LPA∃~s < a w = pϕ(~s)q}
pn+1(x ,dn,a) = {∀~z < a[ϕ(~z) ∈ x ≡ t(dn, ϕ(~z))] : ϕ(~z) ∈
L+

Tr} ∪ {∀z[z ∈ dn ⇒ z ∈ x} ∪ {∀w [w ∈ x ⇒ ∃ϕ(~z) ∈
L+

Tr∃~s < a w = pϕ(~s)q}
with dn and Mn defined exactly as before.
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