T-equivalences for positive sentences

Cezary Cieśliński

Institute of Philosophy, the University of Warsaw

Truth Be Told, Amsterdam 2011

Disquotational truth

Disquotational theories of truth can be based on the local or the uniform T-schema.

(Tr-local)
$$Tr(\lceil \varphi \rceil) \equiv \varphi$$
 (Tr-uniform) $\forall x_1...x_n [Tr(\lceil \varphi(x_1...x_n) \rceil) \equiv \varphi(x_1...x_n)]$

Disquotational axioms are then defined as all formulas obtained from (Tr-local) or (Tr-uniform) by substituting for φ formulas (possibly with the truth predicate) forming an appropriate recursive substitution class.

Notation

In what follows the following notation will be used:

- *L_{PA}*, *Sent_{PA}* arithmetical formulas and sentences.
- L_{Tr}, Sent_{Tr} formulas and sentences of the language of arithmetic extended with "Tr".
- L_{Tr}^+ , $Sent_{Tr}^+$ positive formulas and sentences
- Ind_{φ} induction for a formula φ

Basic variants of disquotational theories

Definition 1

- $TB(PA) = PA \cup \{Tr(\lceil \varphi \rceil) \equiv \varphi : \varphi \in L_{PA}\} \cup Ind_{L_{Tr}}$
- $UTB(PA) = PA \cup \{ \forall x_1...x_n [Tr(\lceil \varphi(x_1...x_n) \rceil) \equiv \varphi(x_1...x_n)] : \varphi \in L_{PA} \} \cup Ind_{L_{Tr}}$

Fact 2

Both TB(PA) and UTB(PA) are conservative extensions of PA. Both theories are also truth-theoretically weak.

Arithmetical weakness

- Conservativeness is a desirable property of truth theories.
- Our notion of truth, even introduced via disquotational axioms, can be used in proving new arithmetical theorems (in fact arithmetical strength is desirable).

Arithmetical weakness

 Our notion of truth, even introduced via disquotational axioms, can be used in proving new arithmetical theorems (in fact arithmetical strength is desirable).

Arithmetical weakness

 Our notion of truth, even introduced via disquotational axioms, can be used in proving new arithmetical theorems (in fact arithmetical strength is desirable).

Truth-theoretic weakness

- Truth-theoretic strength is not really required.
- The main point of having the notion of truth is being able to prove truth-involving generalizations

Arithmetical weakness

 Our notion of truth, even introduced via disquotational axioms, can be used in proving new arithmetical theorems (in fact arithmetical strength is desirable).

Truth-theoretic weakness

Truth-theoretic strength is not really required.

The theory PUTB

Definition 3

- A formula φ of the language L_T is positive iff every occurrence of "Tr" in φ lies within a scope of even number of negations.
- PUTB is a theory with full induction, taking as axioms all positive substitutions of (Tr-uniform)

Theorem 4

PUTB is arithmetically equivalent with KF. In particular, the truth predicate of KF is definable in PUTB.

Source: Halbach,V. "Reducing compositional to disquotational truth", *The Review of Symbolic Logic* (2009), 2: 786-798.

Conservativeness theorem

Definition 5

$$\textit{PTB} = \textit{PA} \cup \{\textit{Tr}(\ulcorner \varphi \urcorner) \equiv \varphi : \varphi \in \textit{Sent}_{\textit{Tr}}^+\} \cup \{\textit{Ind}_{\varphi} : \varphi \in \textit{L}_{\textit{Tr}}\}.$$

Theorem 6

PTB is conservative over PA.

Recursive saturation

- A set of formulas p(x, a) with a parameter a is a type over a model M iff every finite subset of p(x, a) is realized in M.
- A model M is recursively saturated iff all recursive types over M are realized.
- Every model M has a recursively saturated elementary extension of the same cardinality.

General strategy

We show that:

(*) For an arbitrary finite $Z \subseteq PTB$ and for an arbitrary recursively saturated model M, M can be extended to a model of L_{Tr} in such a way as to make all sentences in Z true.

Then (for $\psi \in L_{PA}$): if $PTB \vdash \psi$, then for some finite $Z \subseteq PTB$, $Z \vdash \psi$; therefore by (*), $PA \vdash \psi$.

Translation function

Definition 7

We define a translation function $t(a, \varphi)$ - for φ belonging to L_{Tr} , it gives as value an arithmetical formula with a parameter a.

- $t(a, \lceil t = s \rceil) = \lceil t = s \rceil$
- $t(a, Tr(t)) = \lceil t \in a \rceil$
- $t(a, \neg \psi) = \neg t(a, \psi)$, similarly for conjunction and disjunction
- $t(a, \exists x \psi) = \exists x t(a, \psi)$, similarly for the general quantifier.

Basic facts

Fact 8

Let $d \in M$. Let K = (M, T) with $T = \{a : M \models a \in d\}$. Then for every $\varphi \in L_{Tr}$, for every valuation v in M, we have:

$$M \models t(d, \varphi)[v] \text{ iff } K \models \varphi[v]$$

The proof is by induction on the complexity of φ . If e.g. $\varphi = Tr(t)$, then we have: $M \models t(d, Tr(t))[v]$ iff $M \models t \in d[v]$ iff $val^M(t, v) \in T$ iff $K \models Tr(t)[v]$. The proof of the other clauses is routine.

Basic facts

Fact 9

Let $M_1 = (M, A)$, $M_2 = (M, B)$ with A, B being subsets of M such that $A \subseteq B$. Then for every valuation v in M, for every $\varphi(x_1...x_n) \in L^+_{Tr}$, we have: if $M_1 \models \varphi(x_1...x_n)[v]$, then $M_2 \models \varphi(x_1...x_n)[v]$.

The proof consists in showing that every formula in L_{Tr}^+ is logically equivalent with some *strictly positive* formula, i.e. a formula in which no occurrence of "Tr" is negated. Then it is enough to prove by induction that every strictly positive formula satisfies the above condition.

Proof of conservativeness theorem

Definition 10

Given a recursively saturated model M, we define a family of recursive types over M, a family of elements realizing these types and a family of models M_n which extend M to a model of L_{Tr} .

- 0
- $p_0(x) = \{ \varphi \in x \equiv \varphi : \varphi \in Sent_{PA} \} \cup \{ \forall w (w \in x \Rightarrow w \in Sent_{PA} \} \}$
- d_0 realizes $p_0(x)$
- $T_0 = \{a : M \models a \in d_0\}$
- $M_0 = (M, T_0)$
- **2**
- $p_{n+1}(x, d_n) = \{ \varphi \in x \equiv t(d_n, \varphi) : \varphi \in Sent_{Tr}^+ \} \cup \{ \forall z(z \in d_n \Rightarrow z \in x) \} \cup \{ \forall z(z \in x \Rightarrow z \in Sent_{Tr}^+) \}$
- d_{n+1} realizes $p_{n+1}(x, d_n)$
- $T_{n+1} = \{a : M \models a \in d_{n+1}\}$
- $M_{n+1} = (M, T_{n+1})$

Proof of conservativeness theorem

Observation

For every n, a type p_n , a model M_n and an element d_n are well defined. We have also:

$$\forall \varphi \in Sent_{Tr} \forall n \ [M \models t(d_n, \varphi) \ iff \ M_n \models \varphi].$$

Proof of conservativeness theorem

Let Z be a finite subset of PTB. Given a recursively saturated model M, we will find an L_{Tr} -extension of M which makes Z true. Let $A = \{ Tr(\lceil \varphi_0 \rceil) \equiv \varphi_0 \dots Tr(\lceil \varphi_k \rceil) \equiv \varphi_k \}$ be a set of all T-sentences in Z. Fix n as the smallest natural number such that:

$$\forall i \leq k[M_n \models \varphi_i \vee \neg \exists I \in NM_I \models \varphi_i]$$

The existence of such a number follows from Fact 9 together with the observation that $T_0 \subseteq T_1 \subseteq T_2$ Then we observe that $M_{n+1} \models Z$. Since T_{n+1} is parametrically definable in M, it is inductive. We have also:

$$\forall i \leq kM_{n+1} \models \mathit{Tr}(\lceil \varphi_i \rceil) \equiv \varphi_i.$$

Additional comments

- **Comment 1.** All models M_n satisfy the condition " $Tr(\psi) \Rightarrow \psi$ " for all $\psi \in L_{Tr}$, so the same proof establishes conservativeness of a theory containing not only true-positive biconditionals with induction, but also all instances (not just the positive ones) of the "Tr-out" schema.
- **Comment 2.** A slightly modified construction gives a proof of a stronger result (in the formulation below \vec{z} stands for a sequence of variables).

A strengthened version

Theorem 11

 $PTB \cup \{ \forall \vec{z} [Tr(\varphi(\vec{z})) \Rightarrow \varphi(\vec{z})] : \varphi(\vec{z}) \in L_{Tr} \}$ is conservative over PA.

The proof involves a different characterization of the set of types. Fixing a model M and a nonstandard $a \in M$, we put:

- $p_0(x, a) = \{ \forall \vec{z} < a[\varphi(\vec{z}) \in x \equiv \varphi(\vec{z})] : \varphi(\vec{z}) \in L_{PA} \} \cup \{ \forall w[w \in x \Rightarrow \exists \varphi(\vec{z}) \in L_{PA} \exists \vec{s} < a \ w = \lceil \varphi(\vec{s}) \rceil \}$
- $p_{n+1}(x, d_n, a) = \{ \forall \vec{z} < a[\varphi(\vec{z}) \in x \equiv t(d_n, \varphi(\vec{z}))] : \varphi(\vec{z}) \in L_{Tr}^+ \} \cup \{ \forall z[z \in d_n \Rightarrow z \in x] \cup \{ \forall w[w \in x \Rightarrow \exists \varphi(\vec{z}) \in L_{Tr}^+ \exists \vec{s} < a \ w = \lceil \varphi(\vec{s}) \rceil \}$

with d_n and M_n defined exactly as before.

References

- Cezary Cieśliński 'T-equivalences for positive sentences',
 'The Review of Symbolic Logic' 4(2), 319–325, 2011.
- Cezary Cieśliński 'Typed and Untyped Disquotational Truth', in *Unifying the Philosophy of Truth*, T. Achourioti and H. Galinon and K. Fujimoto and J. Martínez-Fernández (eds), *Logic, Epistemology, and the Unity of Science* vol. 36, 307–320 Springer, Dordrecht, 2015.
- Cezary Cieśliński The Epistemic Lightness of Truth. Deflationism and its Logic, Cambridge University Press, 2017.