T-equivalences for positive sentences

Cezary Cieśliński

Institute of Philosophy, the University of Warsaw

Truth Be Told, Amsterdam 2011
Disquotational theories of truth can be based on the local or the uniform T-schema.

(Tr-local) \[\text{Tr}(\Box \varphi) \equiv \varphi \]

(Tr-uniform) \[\forall x_1 \ldots x_n [\text{Tr}(\Box \varphi(x_1 \ldots x_n)) \equiv \varphi(x_1 \ldots x_n)] \]

Disquotational axioms are then defined as all formulas obtained from (Tr-local) or (Tr-uniform) by substituting for \(\varphi \) formulas (possibly with the truth predicate) forming an appropriate recursive substitution class.
In what follows the following notation will be used:

- L_{PA}, $Sent_{PA}$ - arithmetical formulas and sentences.
- L_{Tr}, $Sent_{Tr}$ - formulas and sentences of the language of arithmetic extended with “Tr”.
- L_{Tr}^{+}, $Sent_{Tr}^{+}$ - positive formulas and sentences
- Ind_{φ} - induction for a formula φ
Basic variants of disquotational theories

Definition 1

- \(TB(\text{PA}) = \text{PA} \cup \{ \text{Tr}(\neg \varphi) \equiv \varphi : \varphi \in L_{\text{PA}} \} \cup \text{Ind}_{L_{\text{Tr}}} \)
- \(UTB(\text{PA}) = \text{PA} \cup \{ \forall x_1 \ldots x_n [\text{Tr}(\neg \varphi(x_1 \ldots x_n)) \equiv \varphi(x_1 \ldots x_n)] : \varphi \in L_{\text{PA}} \} \cup \text{Ind}_{L_{\text{Tr}}} \)

Fact 2

Both \(TB(\text{PA}) \) and \(UTB(\text{PA}) \) are conservative extensions of PA. Both theories are also truth-theoretically weak.
Reactions

Arithmetical weakness

- Conservativeness is a desirable property of truth theories.
- Our notion of truth, even introduced via disquotational axioms, can be used in proving new arithmetical theorems (in fact arithmetical strength is desirable).
Reactions

Arithmetical weakness

Our notion of truth, even introduced via disquotational axioms, can be used in proving new arithmetical theorems (in fact arithmetical strength is desirable).
Reactions

Arithmetical weakness

- Our notion of truth, even introduced via disquotational axioms, can be used in proving new arithmetical theorems (in fact arithmetical strength is desirable).

Truth-theoretic weakness

- Truth-theoretic strength is not really required.
- The main point of having the notion of truth is being able to prove truth-involving generalizations.
Reactions

Arithmetical weakness

- Our notion of truth, even introduced via disquotational axioms, can be used in proving new arithmetical theorems (in fact arithmetical strength is desirable).

Truth-theoretic weakness

- Truth-theoretic strength is not really required.
The theory PUTB

Definition 3

A formula φ of the language L_{Tr} is positive iff every occurrence of “Tr” in φ lies within a scope of even number of negations.

PUTB is a theory with full induction, taking as axioms all positive substitutions of (Tr-uniform)

Theorem 4

PUTB is arithmetically equivalent with KF. In particular, the truth predicate of KF is definable in PUTB.

Definition 5

\[PTB = PA \cup \{ \text{Tr}(\neg \varphi) \equiv \varphi : \varphi \in \text{Sent}^+_\text{Tr} \} \cup \{ \text{Ind}_\varphi : \varphi \in L_{\text{Tr}} \}. \]

Theorem 6

PTB is conservative over PA.
A set of formulas $p(x, a)$ with a parameter a is a type over a model M iff every finite subset of $p(x, a)$ is realized in M.

A model M is recursively saturated iff all recursive types over M are realized.

Every model M has a recursively saturated elementary extension of the same cardinality.
We show that:

\((\ast)\) For an arbitrary finite \(Z \subseteq PTB\) and for an arbitrary recursively saturated model \(M\), \(M\) can be extended to a model of \(L_{Tr}\) in such a way as to make all sentences in \(Z\) true.

Then (for \(\psi \in L_{PA}\)): if \(PTB \vdash \psi\), then for some finite \(Z \subseteq PTB\), \(Z \vdash \psi\); therefore by \((\ast)\), \(PA \vdash \psi\).
We define a translation function \(t(a, \varphi) \) - for \(\varphi \) belonging to \(L_{Tr} \), it gives as value an arithmetical formula with a parameter \(a \).

- \(t(a, \neg t = s) = \neg t = s \)
- \(t(a, Tr(t)) = t \in a \)
- \(t(a, \neg \psi) = \neg t(a, \psi) \), similarly for conjunction and disjunction
- \(t(a, \exists x \psi) = \exists x t(a, \psi) \), similarly for the general quantifier.
Fact 8

Let \(d \in M \). Let \(K = (M, T) \) with \(T = \{ a : M \models a \in d \} \). Then for every \(\varphi \in L_{Tr} \), for every valuation \(v \) in \(M \), we have:

\[
M \models t(d, \varphi)[v] \iff K \models \varphi[v]
\]

The proof is by induction on the complexity of \(\varphi \). If e.g.
\(\varphi = Tr(t) \), then we have:
\[
M \models t(d, Tr(t))[v] \iff M \models t \in d[v] \iff val^M(t, v) \in T \iff K \models Tr(t)[v].
\]
The proof of the other clauses is routine.
Fact 9

Let $M_1 = (M, A)$, $M_2 = (M, B)$ with A, B being subsets of M such that $A \subseteq B$. Then for every valuation v in M, for every $\varphi(x_1\ldots x_n) \in L_{Tr}^+$, we have: if $M_1 \models \varphi(x_1\ldots x_n)[v]$, then $M_2 \models \varphi(x_1\ldots x_n)[v]$.

The proof consists in showing that every formula in L_{Tr}^+ is logically equivalent with some strictly positive formula, i.e. a formula in which no occurrence of “Tr” is negated. Then it is enough to prove by induction that every strictly positive formula satisfies the above condition.
Definition 10

Given a recursively saturated model M, we define a family of recursive types over M, a family of elements realizing these types and a family of models M_n which extend M to a model of L_{Tr}.

1. $p_0(x) = \{ \varphi \in x \equiv \varphi : \varphi \in Sent_{PA} \} \cup \{ \forall w (w \in x \Rightarrow w \in Sent_{PA}) \}$
 - d_0 realizes $p_0(x)$
 - $T_0 = \{ a : M \models a \in d_0 \}$
 - $M_0 = (M, T_0)$

2. $p_{n+1}(x, d_n) = \{ \varphi \in x \equiv t(d_n, \varphi) : \varphi \in Sent_{Tr}^+ \} \cup \{ \forall z (z \in d_n \Rightarrow z \in x) \} \cup \{ \forall z (z \in x \Rightarrow z \in Sent_{Tr}^+) \}$
 - d_{n+1} realizes $p_{n+1}(x, d_n)$
 - $T_{n+1} = \{ a : M \models a \in d_{n+1} \}$
 - $M_{n+1} = (M, T_{n+1})$
Proof of conservativeness theorem

Observation

For every \(n \), a type \(p_n \), a model \(M_n \) and an element \(d_n \) are well defined. We have also:

\[
\forall \varphi \in \text{Sent}_{Tr} \forall n [M \models t(d_n, \varphi) \text{ iff } M_n \models \varphi].
\]
Proof of conservativeness theorem

Let Z be a finite subset of PTB. Given a recursively saturated model M, we will find an L_{Tr}-extension of M which makes Z true. Let $A = \{ Tr(\neg \varphi_0) \equiv \varphi_0 \ldots \, Tr(\neg \varphi_k) \equiv \varphi_k \}$ be a set of all T-sentences in Z. Fix n as the smallest natural number such that:

$$\forall i \leq k[M_n \models \varphi_i \lor \neg \exists l \in NM_l \models \varphi_i]$$

The existence of such a number follows from Fact 9 together with the observation that $T_0 \subseteq T_1 \subseteq T_2 \ldots$. Then we observe that $M_{n+1} \models Z$. Since T_{n+1} is parametrically definable in M, it is inductive. We have also:

$$\forall i \leq kM_{n+1} \models Tr(\neg \varphi_i) \equiv \varphi_i.$$
Comment 1. All models M_n satisfy the condition “$Tr(\psi) \Rightarrow \psi$” for all $\psi \in L_{Tr}$, so the same proof establishes conservativeness of a theory containing not only true-positive biconditionals with induction, but also all instances (not just the positive ones) of the “Tr-out” schema.

Comment 2. A slightly modified construction gives a proof of a stronger result (in the formulation below \vec{z} stands for a sequence of variables).
Theorem 11

\(PTB \cup \{ \forall \vec{z}[\text{Tr}(\varphi(\vec{z})) \Rightarrow \varphi(\vec{z})] : \varphi(\vec{z}) \in L_{\text{Tr}} \} \) is conservative over PA.

The proof involves a different characterization of the set of types. Fixing a model \(M \) and a nonstandard \(a \in M \), we put:

- \(\rho_0(x, a) = \{ \forall \vec{z} < a[\varphi(\vec{z}) \in x \equiv \varphi(\vec{z})] : \varphi(\vec{z}) \in L_{\text{PA}} \} \cup \{ \forall w[w \in x \Rightarrow \exists \varphi(\vec{z}) \in L_{\text{PA}} \exists \vec{s} < a w = \lceil \varphi(\vec{s}) \rceil] \}

- \(\rho_{n+1}(x, d_n, a) = \{ \forall \vec{z} < a[\varphi(\vec{z}) \in x \equiv t(d_n, \varphi(\vec{z}))] : \varphi(\vec{z}) \in L_{\text{Tr}}^+ \} \cup \{ \forall z[z \in d_n \Rightarrow z \in x] \cup \{ \forall w[w \in x \Rightarrow \exists \varphi(\vec{z}) \in L_{\text{Tr}}^+ \exists \vec{s} < a w = \lceil \varphi(\vec{s}) \rceil] \}

with \(d_n \) and \(M_n \) defined exactly as before.